首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   9篇
  国内免费   3篇
化学   62篇
力学   6篇
数学   9篇
物理学   31篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   4篇
  2015年   2篇
  2014年   8篇
  2013年   4篇
  2012年   13篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   9篇
  2007年   15篇
  2006年   8篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1993年   2篇
  1991年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
1.
Imaging of latent fingerprints using time-resolved (TR) method offers a broader platform to eliminate the unwanted background emission. In this paper, a novel TR imaging technique is demonstrated and implemented, which facilitates the detection of latent fingerprints with nanosecond resolution. Simulated experiments were carried out with two overlapping fingerprints treated with two fluorescent powders having different lifetimes in nanosecond range. The dependence of the fluorescence emission intensity in nanosecond resolution of TR imaging is also revealed.  相似文献   
2.
A study of the variation of the spectral shape and the harmonic distribution of the high-order harmonics generated from silver plasma on the frequency chirp of the driving laser radiation (793 nm 48 fs) is reported. The results of the systematic study of the harmonic generation from the 21st order up to the 61st order (λ=13 nm) are presented. A tuning of the harmonic wavelength up to 0.8 nm can be accomplished by variation of the laser chirp. PACS 42.65.Ky; 42.79.Nv; 52.38.Mf  相似文献   
3.
4.
The International Standard ISO 22415 provides methods to measure sputtering yield volumes of organic test materials using argon cluster ions. The test materials should consist of thin films of known thicknesses between 50 and 1000 nm. The format of the test materials, the measurement of sputtering ion dose, sputtered depth, and reporting requirements for sputtering yield volumes are described.  相似文献   
5.
Four simple methods are evaluated to determine their accuracies for establishing the interface location in secondary ion mass spectrometry intensity depth profiles of organic layers where matrix effects have not been measured. Accurate location requires the separate measurement of each ion's matrix factor. This is often not possible, and so estimates using matrix-less methods are required. Six pure organic material interfaces are measured using many secondary ions to compare their locations from the four methods with those from full evaluation with matrix terms. For different secondary ions, matrix effects cause the apparent interface positions to vary over 20 nm. The shifts in the intensity profiles on going from a layer of P into a layer of Q are in the opposite direction to that for going from Q into P, so doubling layer thickness errors. The four methods are as follows: M1, use of the median interface position in the intensity profiles for the five lightest ions for 15 ≤ m/z ≤ 150; M2, extrapolation of the position for each ion to m/z = 0 for ions with m/z ≤ 150; M3, as M2 but for m/z ≤ 300; and M4, the extreme positions for all m/z ≤ 100. Comparison with the location using matrix terms shows their ranking, from best to worst, to be M4, M3, M1, and M2 with average errors of 10%, 12%, 14%, and 17%, respectively, of the profile interface full widths at half maximum. Use of pseudo-molecular ions is very much poorer, exceeding 50%, and should be avoided.  相似文献   
6.
The reaction of the 1,2,3,5-dithiadiazolyls (4-R-C(6)H(4)CN(2)S(2))(2) (R = Me, 2a; Cl, 2b; OMe, 2c; and CF3, 2d) and (3-NC-5-tBu-C(6)H(3)CN(2)S(2))(2) (2e) with [CpCr(CO)(3)](2) (Cp = eta(5)-C(5)H(5)) (1) at ambient temperature respectively yielded the complexes CpCr(CO)(2)(eta(2)-S(2)N(2)CC(6)H(4)R) (R = 4-Me, 3a; 4-Cl, 3b; 4-OMe, 3c; and 4-CF(3), 3d) and CpCr(CO)(2)(eta(2)-S(2)N(2)CC(6)H(3)-3-(CN)-5-(tBu)) (3e) in 35-72% yields. The complexes 3c and 3d were also synthesized via a salt metathesis method from the reaction of NaCpCr(CO)(3) (1B) and the 1,2,3,5-dithiadiazolium chlorides 4-R-C(60H(4)CN(2)S(2)Cl (R = OMe, 8c; CF(3), 8d) with much lower yields of 6 and 20%, respectively. The complexes were characterized spectroscopically and also by single-crystal X-ray diffraction analysis. Cyclic voltammetry experiments were conducted on 3a-e, EPR spectra were obtained of one-electron-reduced forms of 3a-e, and variable temperature 1H NMR studies were carried out on complex 3d. Hybrid DFT calculations were performed on the model system [CpCr(CO)(2)S(2)N(2)CH] and comparisons are made with the reported CpCr(CO)(2)(pi-allyl) complexes.  相似文献   
7.
Qian K  Soon SH  Asundi A 《Optics letters》2003,28(18):1657-1659
Determination of the phase or phase derivative from interferometric fringe patterns is an important task in optical interferometry. The use of wavelet ridges was recently shown to be an effective method for phase retrieval from a single fringe pattern. One necessary requirement in this method is the need for carrier frequency. In cases when carrier frequency is not available, the novel phase-shifting windowed Fourier ridges method can be used. Phase derivatives with the proper sign can be directly retrieved even in the presence of noise. An application for curvature determination from speckle shearographic fringes demonstrates the effectiveness of the method.  相似文献   
8.
The synthetic transformation of polypeptides with molecular accuracy holds great promise for providing functional and structural diversity beyond the proteome. Consequently, the last decade has seen an exponential growth of site‐directed chemistry to install additional features into peptides and proteins even inside living cells. The disulfide rebridging strategy has emerged as a powerful tool for site‐selective modifications since most proteins contain disulfide bonds. In this Review, we present the chemical design, advantages and limitations of the disulfide rebridging reagents, while summarizing their relevance for synthetic customization of functional protein bioconjugates, as well as the resultant impact and advancement for biomedical applications.  相似文献   
9.
Since 1989, AFMs have been used to map the nanomechanical properties of surfaces using measurements such as force-distance curves. Quantification of the force and elastic parameters are critical to the nanomechanical analysis and positive identification of materials at the nanoscale, as well as for assessing behaviour at surfaces. In recent years, there have been AFM papers publishing “quantitative” values for the indentation modulus, however, many involved large uncertainties arising from the lack of calibration of key components, the use of manufacturers’ nominal values for these components or the use of incorrect models. This paper addresses the quantification issues in modulus measurement at surfaces for homogeneous materials using force-distance curves and how to do this with sufficient accuracy to identify materials at the nanoscale. We review the available theory and describe two routes to quantitative modulus measurement using both the AFM on its own and the AFM combined with a nanoindenter. The first involves the direct measurement of modulus using a fully calibrated instrument and allows depth analysis. The second uses indirect measurement through calibration by reference materials of known reduced modulus. For depth analysis by this second route, these reference moduli need to be known as a function of depth. We show that, using the second route, an unknown polymer may be analysed using the nanoindenter, its modulus determined and, providing the moduli of the polymers to be identified or distinguished differ by more than 20%, identified with 95% confidence. We recommend that users evaluate a set of reference samples using a traceable nanoindenter via the first route, and then use these to calibrate the AFM by the second route for identification of nano-regions using the AFM.  相似文献   
10.
An interlaboratory study involving 19 time‐of‐flight static secondary ion mass spectrometer (TOF‐SSIMS) instruments from 12 countries has been conducted. Analysts were supplied, by the National Physical Laboratory, with a protocol for analysis together with three reference materials: poly(tetrafluoroethylene), a thin layer of polycarbonate on a silicon wafer and a patterned sample with different amounts of Irganox 1010 in each of four quadrants on a silicon wafer. The objectives of the study are (i) to determine the repeatability and constancy of the relative intensity scale achievable using the draft ISO standard (DIS 23830), (ii) to evaluate the effectiveness of mass scale calibration and optimisation procedure and (iii) to evaluate the current capability of relative quantification using SSIMS. The results of this study show that the constancy of the relative intensity scale has an approximate scatter standard deviation of only 5%. This is excellent and demonstrates that SSIMS measurements are significantly more stable than often thought by analysts. The draft ISO standard (DIS) CD 13084 for calibration of the mass scale in TOF‐SIMS was evaluated and found to be consistent with our previous study. Four laboratories optimised the instrument mass calibration accuracy using this procedure leading to improvements in mass scale calibration by factors of 1.8, 2.2, 2.3 and 8.6. Using a novel patterned Irganox sample it is shown that the precision of relative quantification may be as good as a standard deviation of only 5% for 16 instruments—this is a remarkable result. Further work is required to develop more robust reference materials. © Crown copyright 2010. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号