首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   1篇
化学   18篇
力学   26篇
数学   1篇
物理学   6篇
  2022年   2篇
  2021年   1篇
  2018年   1篇
  2016年   2篇
  2014年   2篇
  2013年   4篇
  2012年   6篇
  2011年   3篇
  2010年   6篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
Irradiation of metallic surfaces using ultra-short pulse laser results in a dual-scale structure. While metallic surfaces are superhydrophilic immediately after laser irradiation, prolonged exposure to air renders surfaces superhydrophobic due to surface reactions and deposition of carbonaceous materials onto the surface. In this work, we have fabricated a paraboloid microstructure, which is analyzed thermodynamically through the use of the Gibbs free energy to obtain the equilibrium contact angle and contact angle hysteresis. The effects of the geometrical details on maximizing the superhydrophobicity of the nanopatterned surface are also discussed in an attempt to design surfaces with desired and/or optimum wetting characteristics.  相似文献   
2.
3.
In this paper visualisation and direct velocity profile measurement experiments for a branched polypropylene melt in a 10:1 axisymmetric contraction demonstrate the onset of wall slip. Video processing of the flow shows the formation of vortices and their diminution with increasing flow rate. Numerical simulations using a multimode K-BKZ viscoelastic and a purely viscous (Cross) model—both of them incorporating a nonlinear slip law—were used to predict the flow kinematics and dynamics as well as to deduce the slip velocity function by performing fitting to the velocity profiles. It was found that the numerical predictions agree well with the experimental results for the velocity profiles, and vortex formation, growth and reduction. It is suggested that such experiments (visualisation of entrance flow and direct velocity profile measurement) can be useful in evaluating the validity of constitutive equations and slip laws in the flow of polymer melts through processing equipment.  相似文献   
4.
A 28-member focused library, based on the pseudosymmetric template of the marine alkaloids psammaplysenes, was prepared from combinations of components that were, in turn, derived from 4-iodophenol.  相似文献   
5.
We use large scale coarse‐grained molecular dynamics simulations to study the kinetics of polymer melt crystallization. For monodisperse polymer melts of several chain lengths under various cooling protocols, we show that short chains have a higher terminal crystallinity value compared to longer ones. They align at the early stages and then cease evolving. Long chains, however, align, fold into lamella structures and then slowly optimize their dangling ends for the remaining simulation time. We then identify the mechanism behind bidisperse blend crystallization. To this end, we introduce a new algorithm (called Individual Chain Crystallinity) that allows the calculation of the crystallinity separately for short and long chains in the blend. We find that, in general, bidispersity hinders crystallization significantly. At first the crystallinity of the long chain components exceeds that of the monodisperse melt, but subsequently falls below the corresponding monodisperse melt curve after a certain “crossover time.” The time of the crossover can be attributed to the time required for the full crystallization of the short chains. This indicates that at the early stages the short chains are helping long chains to crystallize. However, after all short chains have crystallized they start to hinder the crystallization of the long chains by obstructing their motion. Lastly, polymer crystallization upon various thermodynamic protocols is studied. Slower cooling is found to increase the crystallinity value. Upon an instantaneous deep quench and subsequent isothermal relaxation, the crystallinity grows rapidly with time at early stages and subsequently saturates. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2318–2326  相似文献   
6.
7.
The use of non-homopolymerizable monomers such as 1,1-diphenylethylene (DPE) in the synthesis of functional polymers and block copolymers by cationic polymerization has been recently reported. The most important parameters in this process, the kinetics and extent of ionization and capping as well as the stability of the cation, were investigated by studying the reaction with TiCl4 of 1-methoxy-1,1-diphenyl-3,3,5,5-tetramethylhexane, a model for DPE-capped polyisobutene chain-end. This study was performed using 1H NMR and the high-purity stopped-flow device coupled with UV-visible spectroscopy.  相似文献   
8.
We find the lattice spacing dependence of the eigenvalue density of the non-Hermitian Wilson Dirac operator in the ? domain. The starting point is the joint probability density of the corresponding random matrix theory. In addition to the density of the complex eigenvalues we also obtain the density of the real eigenvalues separately for positive and negative chiralities as well as an explicit analytical expression for the number of additional real modes.  相似文献   
9.
Conventional rheometry coupled with local velocity measurements (ultrasonic Doppler velocimetry) are used to study the flow behaviour of various commercial pulp fibre suspensions at fibre mass concentrations ranging from 1 to 5 wt.%. Experimental data obtained using a stress-controlled rheometer by implementing a vane in large cup geometry exhibits apparent yield stress values which are lower than those predicted before mainly due to existence of apparent slip. Pulp suspensions exhibit shear-thinning behaviour up to a high shear rate value after which Newtonian behaviour prevails. Local velocity measurements prove the existence of significant wall slippage at the vane surface. The velocimetry technique is also used to study the influence of pH and lignin content on the flow behaviour of pulp suspensions. The Herschel–Bulkley constitutive equation is used to fit the local steady-state velocity profiles and to predict the steady-state flow curves obtained by conventional rheometry. Consistency between the various sets of data is found for all suspensions studied, including apparent yield stress, apparent wall slip and complete flow curves.  相似文献   
10.
A new rigorous mathematical model for evaporation/condensation, including boiling, has been proposed. A problem of phase transition and in particular evaporation/condensation is one of the most acute problems of modern technology with numerous applications in industry, such as: in refrigeration, distillation in chemical industry. It is very common to use equilibrium evaporation model, which assumes that concentrations of species in the gas phase is always at saturated condition. Such kind of approach can lead to significant errors, resulting in negative concentrations in complex computer simulations. In this work two analytical solution of simplified differential-algebraic system have been obtained. One of them was deduced using assumption that the process is isothermal and gas volume fraction is constant. In the second solution the assumption about gas volume fraction has been removed. The code for numerical solution of differential-algebraic system, using conservative scheme, has been developed. It was designed to solve both systems of equations with boiling and without. Numerical calculations of ammonia-water system with various initial conditions, which correspond to evaporation and/or condensation of both components, have been performed. It has been shown that, although system quickly evolves to quasi equilibrium state (the differences between current and equilibrium concentrations are small) it is necessary to use non-equilibrium evaporation model, to calculate accurately evaporation/condensation rates, and consequently all other dependent variables. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号