首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   6篇
物理学   2篇
  2024年   1篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2007年   1篇
  2004年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
Clavulanic acid is a naturally occurring antibiotic produced by Streptomyces clavuligerus. The present work reports on clavulanic acid production by Streptomyces clavuligerus MTCC 1142 using one-factor-at-a-time and L25 orthogonal array. The one-factor-at-a-time method was adopted to investigate the effect of media components (i.e., carbon source, nitrogen source and inoculum concentration) and environmental factors such as pH for clavulanic acid production. Production of clavulanic acid by Streptomyces clavuligerus was investigated using seven different carbon sources (viz. glucose, sucrose, modified starch, rice-bran oil, soybean oil, palm oil, and glycerol) and six different nitrogen sources (viz. peptone, yeast extract, ammonium chloride, ammonium carbonate, sodium nitrate and potassium nitrate). A maximum yield of 140 μg/mL clavulanic acid was obtained in the medium containing soybean oil as a carbon source and yeast extract as nitrogen source. Subsequently, the concentration of soybean flour, soybean oil, dextrin, yeast extract and K2HPO4 were optimized using L25 orthogonal array method. The final optimized medium produced 500 μg/mL clavulanic acid at the end of 96 h as compared to 140 μg/mL before optimization. Synthesis of precursor molecules as a metabolic driving force is of considerable importance in antibiotic synthesis. Attempts to increase the clavulanic acid synthesis by manipulating the anaplerotic flux on C3 and C5 precursors by supplementing the medium with arginine, ornithine, proline, valine, leucine, isoleucine, pyruvic acid and á-ketoglutarate were successful. Supplementing the optimized medium with 0.1 M arginine and 0.1 M leucine increased the yield of clavulanic acid further to 1100 μg/mL and 1384 μg/mL respectively.  相似文献   
4.
A simple and straightforward stereoselective total synthesis of Pectinolides A, C, and H is described. The synthesis has been started from commercially available (+)‐diethyl l ‐tartrate and involves OhiraBestmann reaction, CoreyBakshiShibata (CBS) reduction, and StillGennari olefination as key steps.  相似文献   
5.
Fermentative production of curdlan   总被引:1,自引:0,他引:1  
Curdlan was produced by pure culture fermentation using Agrobacterium radiobacter NCIM 2443. Three different carbon sources (glucose, sucrose, maltose) were selected for study. Sucrose was found to be the most efficient. Utilization of sugar during the course of fermentation was studied, and the data were correlated to the production of curdlan. Curdlan mimics a secondary metabolite, in that its synthesis is associated with the poststationary growth phase of nitrogen-depleted batch culture. This was inferred from the results obtained from utilization of nitrogen. Regulation of pH at 6.1 +/- 0.3 resulted in an increased yield of curdlan from 2.48 to 4.8 g/L, and the corresponding increase in succinoglucan production was from 1.78 to 2.8 g/L. An attempt was made to increase curdlan production by the addition of the uridine nucleotides UMP and UDP-glucose to the fermentation broth. It was found that UDP-glucose at 0.8 microg/mL and UMP at 0.6 microg/mL served as precursors for curdlan and succinoglucan production when added after 18 h of nitrogen depletion in the fermentation broth.  相似文献   
6.
A novel Schiff base, 3-(((1H-1,2,4-triazol-3-yl)imino)methyl)-4H-chromen-4-one (L) was synthesized and used as ligand for the synthesis of Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) complexes. The structural characterization of the ligand and its metal complexes was determined by using various physicochemical and spectroscopic methods. The IR data show that the Schiff base ligand acts as a bidentate donor coordinating through the oxygen atom of the chromone and nitrogen atom of the imine group. Based on all spectral data, tetrahedral geometry has been proposed for all the metal complexes except Cu(II) and Pd(II) complexes. However, square-planar geometry has been proposed for Cu(II) and Pd(II) complexes. DNA binding interaction of the ligand and its metal complexes was investigated by using UV–visible absorption, fluorescence and molecular docking studies. The binding constants were in the order of 104 M?1 suggesting good binding affinity towards CT-DNA. The DNA cleavage activity of the synthesized compounds was investigated by using agarose gel electrophoresis. In vitro antimicrobial activity of the synthesized compounds were screened against two gram-positive bacteria (Bacillus subtilis, Staphylococcus aureu) and two gram-negative bacteria (Escherichia coli, Proteus vulgaris) and one fungi strain Candida albicans using disc diffusion method. Antioxidant activity was carried out by DPPH radical scavenging method. In vitro anti-proliferative activity of the ligand and its metal complexes was also carried on the HEK-293, HeLa, IMR-32 and MCF-7 cancer cell lines using MTT assay.  相似文献   
7.
Electrochemical CO2 reduction (CO2RR) on copper (Cu) shows promise for higher-value products beyond CO. However, challenges such as the limited CO2 solubility, high overpotentials, and the competing hydrogen evolution reaction (HER) in aqueous electrolytes hinder the practical realization. We propose a functionalized ionic liquid (IL) which generates ion-CO2 adducts and a hydrogen bond donor (HBD) upon CO2 absorption to modulate CO2RR on Cu in a non-aqueous electrolyte. As revealed by transient voltammetry, electrochemical impedance spectroscopy (EIS), and in situ surface-enhanced Raman spectroscopy (SERS) complemented with image charge augmented quantum-mechanical/molecular mechanics (IC-QM/MM) computations, a unique microenvironment is constructed. In this microenvironment, the catalytic activity is primarily governed by the IL and HBD concentrations; former controlling the double layer thickness and the latter modulating the local proton availability. This translates to ample CO2 availability, reduced overpotential, and suppressed HER where C4 products are obtained. This study deepens the understanding of electrolyte effects in CO2RR and the role of IL ions towards electrocatalytic microenvironment design.  相似文献   
8.
Most neurodegenerative diseases such as Alzheimer’s disease, type 2 diabetes, Parkinson’s disease, etc. are caused by inclusions and plaques containing misfolded protein aggregates. These protein aggregates are essentially formed by the interactions of either the same (homologous) or different (heterologous) sequences. Several experimental pieces of evidence have revealed the presence of cross-seeding in amyloid proteins, which results in a multicomponent assembly; however, the molecular and structural details remain less explored. Here, we discuss the amyloid proteins and the cross-seeding phenomena in detail. Data suggest that targeting the common epitope of the interacting amyloid proteins may be a better therapeutic option than targeting only one species. We also examine the dual inhibitors that target the amyloid proteins participating in the cross-seeding events. The future scopes and major challenges in understanding the mechanism and developing therapeutics are also considered. Detailed knowledge of the amyloid cross-seeding will stimulate further research in the practical aspects and better designing anti-amyloid therapeutics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号