首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   7篇
  2020年   4篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Enriching the surface density of immobilized capture antibodies enhances the detection signal of antibody sandwich microarrays. In this study, we improved the detection sensitivity of our previously developed P-Si (porous silicon) antibody microarray by optimizing concentrations of the capturing antibody. We investigated immunoassays using a P-Si microarray at three different capture antibody (PSA – prostate specific antigen) concentrations, analyzing the influence of the antibody density on the assay detection sensitivity. The LOD (limit of detection) for PSA was 2.5 ng mL−1, 80 pg mL−1, and 800 fg mL−1 when arraying the PSA antibody, H117 at the concentration 15 μg mL−1, 35 μg mL−1, and 154 μg mL−1, respectively. We further investigated PSA spiked into human female serum in the range of 800 fg mL−1 to 500 ng mL−1. The microarray showed a LOD of 800 fg mL−1 and a dynamic range of 800 fg mL−1 to 80 ng mL−1 in serum spiked samples.  相似文献   
2.
Despite the recent progress in the synthesis of crystalline boronate ester covalent organic frameworks (BECOFs) in powder and thin‐film through solvothermal method and on‐solid‐surface synthesis, respectively, their applications in electronics, remain less explored due to the challenges in thin‐film processability and device integration associated with the control of film thickness, layer orientation, stability and crystallinity. Moreover, although the crystalline domain sizes of the powder samples can reach micrometer scale (up to ≈1.5 μm), the reported thin‐film samples have so far rather small crystalline domains up to 100 nm. Here we demonstrate a general and efficient synthesis of crystalline two‐dimensional (2D) BECOF films composed of porphyrin macrocycles and phenyl or naphthyl linkers (named as 2D BECOF‐PP or 2D BECOF‐PN ) by employing a surfactant‐monolayer‐assisted interfacial synthesis (SMAIS) on the water surface. The achieved 2D BECOF‐PP is featured as free‐standing thin film with large single‐crystalline domains up to ≈60 μm2 and tunable thickness from 6 to 16 nm. A hybrid memory device composed of 2D BECOF‐PP film on silicon nanowire‐based field‐effect transistor is demonstrated as a bio‐inspired system to mimic neuronal synapses, displaying a learning–erasing–forgetting memory process.  相似文献   
3.
Single-layer and multi-layer 2D polyimine films have been achieved through interfacial synthesis methods. However, it remains a great challenge to achieve the maximum degree of crystallinity in the 2D polyimines, which largely limits the long-range transport properties. Here we employ a surfactant-monolayer-assisted interfacial synthesis (SMAIS) method for the successful preparation of porphyrin and triazine containing polyimine-based 2D polymer (PI-2DP) films with square and hexagonal lattices, respectively. The synthetic PI-2DP films are featured with polycrystalline multilayers with tunable thickness from 6 to 200 nm and large crystalline domains (100–150 nm in size). Intrigued by high crystallinity and the presence of electroactive porphyrin moieties, the optoelectronic properties of PI-2DP are investigated by time-resolved terahertz spectroscopy. Typically, the porphyrin-based PI-2DP 1 film exhibits a p-type semiconductor behavior with a band gap of 1.38 eV and hole mobility as high as 0.01 cm2 V−1 s−1, superior to the previously reported polyimine based materials.  相似文献   
4.
Lee  SangWook  Hosokawa  Kazuo  Kim  Soyoun  Jeong  Ok Chan  Lilja  Hans  Laurell  Thomas  Maeda  Mizuo 《Mikrochimica acta》2016,183(12):3321-3327
Microchimica Acta - The authors have developed a porous silicon (P-Si) based duplex antibody microarray platform for simultaneous quantitation of the biomarkers prostate-specific antigen...  相似文献   
5.
Single‐layer and multi‐layer 2D polyimine films have been achieved through interfacial synthesis methods. However, it remains a great challenge to achieve the maximum degree of crystallinity in the 2D polyimines, which largely limits the long‐range transport properties. Here we employ a surfactant‐monolayer‐assisted interfacial synthesis (SMAIS) method for the successful preparation of porphyrin and triazine containing polyimine‐based 2D polymer (PI‐2DP) films with square and hexagonal lattices, respectively. The synthetic PI‐2DP films are featured with polycrystalline multilayers with tunable thickness from 6 to 200 nm and large crystalline domains (100–150 nm in size). Intrigued by high crystallinity and the presence of electroactive porphyrin moieties, the optoelectronic properties of PI‐2DP are investigated by time‐resolved terahertz spectroscopy. Typically, the porphyrin‐based PI‐2DP 1 film exhibits a p‐type semiconductor behavior with a band gap of 1.38 eV and hole mobility as high as 0.01 cm2 V?1 s?1, superior to the previously reported polyimine based materials.  相似文献   
6.
Despite the recent progress in the synthesis of crystalline boronate ester covalent organic frameworks (BECOFs) in powder and thin-film through solvothermal method and on-solid-surface synthesis, respectively, their applications in electronics, remain less explored due to the challenges in thin-film processability and device integration associated with the control of film thickness, layer orientation, stability and crystallinity. Moreover, although the crystalline domain sizes of the powder samples can reach micrometer scale (up to ≈1.5 μm), the reported thin-film samples have so far rather small crystalline domains up to 100 nm. Here we demonstrate a general and efficient synthesis of crystalline two-dimensional (2D) BECOF films composed of porphyrin macrocycles and phenyl or naphthyl linkers (named as 2D BECOF-PP or 2D BECOF-PN ) by employing a surfactant-monolayer-assisted interfacial synthesis (SMAIS) on the water surface. The achieved 2D BECOF-PP is featured as free-standing thin film with large single-crystalline domains up to ≈60 μm2 and tunable thickness from 6 to 16 nm. A hybrid memory device composed of 2D BECOF-PP film on silicon nanowire-based field-effect transistor is demonstrated as a bio-inspired system to mimic neuronal synapses, displaying a learning–erasing–forgetting memory process.  相似文献   
7.
We report on a new surface modification method for grafting a "dynamic" property for on-demand activation of the click reaction. Our approach utilizes the acetylene group masked with dicobalt hexacarbonyl, Co(2)(CO)(6), which is not reactive toward the click reaction. Electrochemical treatment reveals the acetylene group on the selected region, which is then used as a chemical handle for surface functionalization via the click reaction with an azide-containing molecule. Electrochemical and chemical conversions on the surface were verified by cyclic voltammetry, X-ray photoelectron spectroscopy, and fluorescence spectroscopy. We have demonstrated immobilization of an azide-modified RGD peptide and promotion of cell adhesion/migration to the region of electrochemical induction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号