首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20259篇
  免费   2863篇
  国内免费   2725篇
化学   14891篇
晶体学   287篇
力学   1077篇
综合类   250篇
数学   2457篇
物理学   6885篇
  2024年   28篇
  2023年   229篇
  2022年   405篇
  2021年   553篇
  2020年   594篇
  2019年   701篇
  2018年   591篇
  2017年   594篇
  2016年   892篇
  2015年   945篇
  2014年   1191篇
  2013年   1506篇
  2012年   1665篇
  2011年   1856篇
  2010年   1397篇
  2009年   1419篇
  2008年   1584篇
  2007年   1374篇
  2006年   1360篇
  2005年   1207篇
  2004年   952篇
  2003年   750篇
  2002年   904篇
  2001年   617篇
  2000年   501篇
  1999年   366篇
  1998年   259篇
  1997年   190篇
  1996年   167篇
  1995年   131篇
  1994年   116篇
  1993年   89篇
  1992年   78篇
  1991年   73篇
  1990年   55篇
  1989年   53篇
  1988年   47篇
  1987年   37篇
  1986年   25篇
  1985年   34篇
  1984年   20篇
  1983年   19篇
  1982年   13篇
  1980年   39篇
  1979年   14篇
  1978年   37篇
  1977年   51篇
  1976年   23篇
  1975年   19篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Two series of novel alternating copolyoxamides (PAnT-alt-n2 and PAn2-alt-62) are synthesized via solution/solid-state polycondensation (SSP). The alternating structures are analyzed carefully with 1H NMR and 13C NMR spectra. The melting behaviors, thermal stabilities, crystal structures and crystallinities are systematically evaluated by DSC, TGA and WAXD. The results reveal that these alternating copolyoxamides possess almost perfect alternating chain structures and have high melting temperature (Tm > 270 °C), high crystallinity (Xc > 32%) and high decomposition temperature (T5 > 405 °C) as well as low saturated water absorption (<3.5 wt%), which suggests that they have high potential as engineering plastic of high heat resistant.  相似文献   
2.
The artificially accurate design of nonmetal electrocatalysts’ active site has been a huge challenge because no pure active species with the specific structure could be strictly controlled by traditional synthetic methods. Species with a multiconfiguration in the catalyst hinder identification of the active site and the subsequent comprehension of the reaction mechanism. We have developed a novel electro-assisted molecular assembly strategy to obtain a pure pentagon ring on perfect graphene avoiding other reconstructed structures. More importantly, the active atom was confirmed by the subtle passivation process as the topmost carbon atom. Recognition of the carbon-defect electrocatalysis reaction mechanism was first downsized to the single-atom scale from the experimental perspective. It is expected that this innovative electro-assisted molecular assembly strategy could be extensively applied in the active structure-controlled synthesis of nonmetal electrocatalysts and verification of the exact active atom.  相似文献   
3.
4.
A numerical model was developed and validated to investigate the fluid–structure interactions between fully developed pipe flow and core–shell-structured microcapsule in a microchannel. Different flow rates and microcapsule shell thicknesses were considered. A sixth-order rotational symmetric distribution of von Mises stress over the microcapsule shell can be observed on the microcapsule with a thinner shell configuration, especially at higher flow rate conditions. It is also observed that when being carried along in a fully developed pipe flow, the microcapsule with a thinner shell tends to accumulate stress at a higher rate compared to that with a thicker shell. In general, for the same microcapsule configuration, higher flow velocity would induce a higher stress level over the microcapsule shell. The deformation gradient was used to capture the microcapsule's deformation in the present study. The effect of Young's modulus on the microcapsule shell on the microcapsule deformation was investigated as well. Our findings will shed light on the understanding of the stability of core–shell-structured microcapsule when subjected to flow-induced shear stress in a microfluidic system, enabling a more exquisite control over the breakup dynamics of drug-loaded microcapsule for biomedical applications.  相似文献   
5.
International Journal of Theoretical Physics - The Majorana representation, which provides an intuitive way to represent the quantum state by stars on the Bloch sphere, has drawn considerable...  相似文献   
6.
For an integer s0, a graph G is s-hamiltonian if for any vertex subset S?V(G) with |S|s, G?S is hamiltonian, and G is s-hamiltonian connected if for any vertex subset S?V(G) with |S|s, G?S is hamiltonian connected. Thomassen in 1984 conjectured that every 4-connected line graph is hamiltonian (see Thomassen, 1986), and Ku?zel and Xiong in 2004 conjectured that every 4-connected line graph is hamiltonian connected (see Ryjá?ek and Vrána, 2011). In Broersma and Veldman (1987), Broersma and Veldman raised the characterization problem of s-hamiltonian line graphs. In Lai and Shao (2013), it is conjectured that for s2, a line graph L(G) is s-hamiltonian if and only if L(G) is (s+2)-connected. In this paper we prove the following.(i) For an integer s2, the line graph L(G) of a claw-free graph G is s-hamiltonian if and only if L(G) is (s+2)-connected.(ii) The line graph L(G) of a claw-free graph G is 1-hamiltonian connected if and only if L(G) is 4-connected.  相似文献   
7.
Incorporation of a non-hexagonal ring into a nanographene framework can lead to new electronic properties. During the attempted synthesis of naphthalene-bridged double [6]helicene and heptagon-containing nanographene by the Scholl reaction, an unexpected azulene-embedded nanographene and its triflyloxylated product were obtained, as confirmed by X-ray crystallographic analysis and 2D NMR spectroscopy. A 5/7/7/5 ring-fused substructure containing two formal azulene units is formed, but only one of them shows an azulene-like electronic structure. The formation of this unique structure is explained by arenium ion mediated 1,2-phenyl migration and a naphthalene to azulene rearrangement reaction according to an in-silico study. This report represents the first experimental example of the thermodynamically unfavorable naphthalene to azulene rearrangement and may lead to new azulene-based molecular materials.  相似文献   
8.
We investigate the cyclic mechanical behavior in uniaxial tension of three different commercial thermoplastic polyurethane elastomers (TPU) often considered as a sustainable replacement for common filled elastomers. All TPU have similar hard segment contents and linear moduli but sensibly different large strain properties as shown by X-ray analysis. Despite these differences, we found a stiffening effect after conditioning in step cyclic loading which greatly differs from the common softening (also referred as Mullins effect) observed in chemically crosslinked filled rubbers. We propose that this self-reinforcement is related to the fragmentation of hard domains, naturally present in TPU, in smaller but more numerous sub-units that may act as new physical crosslinking points. The proposed stiffening mechanism is not dissimilar to the strain-induced crystallization observed in stretched natural rubber, but it presents a persistent nature. In particular, it may cause a local reinforcement where an inhomogeneous strain field is present, as is the case of a crack propagating in cyclic fatigue, providing a potential explanation for the well-known toughness and wear resistance of TPU.  相似文献   
9.
10.
Three‐dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high‐performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D‐Ni‐core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as‐prepared material exhibits a high specific capacitance (726 F g?1 at a charge/discharge rate of 1 A g?1), good rate capability (a decay of 33 % in Csp with charge/discharge rates increasing from 1 to 20 A g?1), and high cycle stability (only a small decrease of 4.2 % in Csp after 1000 cycles at a scan rate of 100 mV s?1). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as‐prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg?1) and superior long‐term cycle ability (only 4.4 % and 18.6 % loss in Csp after 2000 and 5000 cycles, respectively).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号