首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
化学   9篇
晶体学   1篇
物理学   2篇
  2023年   1篇
  2020年   3篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
  1986年   1篇
  1985年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The hydrolysis of sulfonylamine (HNSO2) results in the formation of sulfuric acid along with ammonia, and is of significant interest due to their negative impact on environment and life on Earth. The formation of H2SO4 through the reaction of HNSO2 with (H2O)2-4 has been studied using high level electronic structure calculations. This hydrolysis reaction is a step-wise process, in the first step a H-atom from H2O is transferred to the N-atom of HNSO2 which results in the formation of NH2, and in the next step, H2SO4, NH3 and water molecule(s) are formed. The results show that the energy barrier associated with the formation of intermediates and product complexes is reduced by 7 to 10 kcal/mol when the number of water molecules is increased from 2 to 4. The rate constant was calculated using canonical variational transition state theory with small curvature tunneling correction over the temperature range of 200 to 1000 K. At 298 K, the calculated rate constant for the formation of intermediate in the first step is 2.24 × 10−16, 1.03 × 10−12, and 2.10 × 10−11 cm3 mol−1 s−1, respectively, for the reaction with water dimer, trimer and tetramer. The calculated enthalpy and free energy show that the reaction corresponding to the formation of H2SO4 is highly exothermic and exoergic in nature.  相似文献   
2.
Planar Schottky diodes are integrated with bow-tie antennas to form a one-dimensional array. The energy is focused onto the antennas through a silicon lens placed on the back of the gallium-arsenide substrate. A polystyrene cap on the silicon lens reduces the reflection loss. A self-aligning process with proton isolation has been developed to make the planar Schottky diodes with a 1.1-THz zero-bias cutoff frequency. The antenna coupling efficiency and imaging properties of the system are studied by video detection measurements at 94 GHz. As a heterodyne receiver, a double-sideband mixer conversion loss of 11.2 dB and noise temperature of 3770°K have been achieved at a local oscillator frequency of 91 GHz. Of this loss, 6.2 dB is attributed to the optical system and the antenna.  相似文献   
3.
The reaction profiles for the uni- and bimolecular decomposition of benzyl hydroperoxide have been studied in the context of initiation reactions for the (aut)oxidation of hydrocarbons. The unimolecular dissociation of benzyl hydroperoxide was found to proceed through the formation of a hydrogen-bonded radical-pair minimum located +181 kJ mol−1 above the hydroperoxide substrate and around 15 kJ mol−1 below the separated radical products. The reaction of toluene with benzyl hydroperoxide proceeds such that O−O bond homolysis is coupled with a C−H bond abstraction event in a single kinetic step. The enthalpic barrier of this molecule-induced radical formation (MIRF) process is significantly lower than that of the unimolecular O−O bond cleavage. The same type of reaction is also possible in the self-reaction between two benzyl hydroperoxide molecules forming benzyloxyl and hydroxyl radical pairs along with benzaldehyde and water as co-products. In the product complexes formed in these MIRF reactions, both radicals connect to a centrally placed water molecule through hydrogen-bonding interactions.  相似文献   
4.

Abstract  

The title complex: C4H12N2[Co(C4H7N2O2)2Cl2]2·2H2O, viz., PpH2[Co(dmgH)2Cl2]2·2H2O, where, dmgH = dimethylglyoximate and Pp = piperazine was synthesized and analyzed by single crystal XRD studies. The complex was grown as brown crystals by the slow evaporation method in ethanol. The complex crystallizes as triclinic with the space group p[`1] p\overline{1} and unit cell parameters a = 8.4521 (10) Å, b = 10.0999 (11) Å, c = 10.8952(13) Å; α = 94.066(6)°, β = 106.047(6)° and γ = 100.901(6)°. There are two complex molecules present in the unit cell. The short intra molecular O–H···O hydrogen bonds link the glyoximate moieties in the crystal.  相似文献   
5.
6.
7.
Radical chain reactions are commonly initiated through the thermal or photochemical activation of purpose‐built initiators, through photochemical activation of substrates, or through well‐designed redox processes. Where radicals come from in the absence of these initiation strategies is much less obvious and are often assumed to derive from unknown impurities. In this situation, molecule‐induced radical formation (MIRF) reactions should be considered as well‐defined alternative initiation modes. In the most general definition of MIRF reactions, two closed‐shell molecules react to give a radical pair or biradical. The exact nature of this transformation depends on the σ‐ or π‐bonds involved in the MIRF process, and this Minireview specifically focuses on reactions that transform two σ‐bonds into two radicals and a closed‐shell product molecule.  相似文献   
8.
In the present work, the mechanism and kinetics of the reaction of perfluoropolymethylisopropyl ether (PFPMIE) with OH radical are studied. The reaction between PFPMIE and OH radical is initiated through breaking of C–C or C–O bond of PFPMIE. These reactions lead to the formation of COF2 molecules and alkyl radical. The pathways corresponding to the reaction between PFPMIE and OH radical have been modelled using density functional theory methods M06-2X and MPW1K with 6-31G(d,p) basis set. It is found that the C–C bond breaking reaction is most favourable than the C–O bond breaking reaction. The subsequent reactions of the alkyl radicals, formed from the C–C bond breaking reactions, are studied in detail. The rate constant for the initial oxidation reactions is calculated using canonical variational transition state theory with small curvature tunnelling corrections over the temperature range of 278–350 K. From the calculated reaction, potential energy surface and rate constant, the lifetime and global warming potential of PFPMIE are studied.  相似文献   
9.
The potential use of small substrate lenses for coupling to antennas at millimeter wave frequencies is investigated by analyzing the focusing properties of dielectric spheres with quarter-wave matching layers. The fields and the power density are calculated at various points within the sphere to learn how the focusing deteriorates as the lens is made smaller. The absorption loss of the lens is also calculated. The calculations show that quartz spheres with quarter-wave matching layers, can exhibit good focusing properties down to a radius of about half a free space wavelength. This minimum radius was found to increase almost linearly with the refractive index of the lens. The calculations also indicate that at 94GHz the absorption losses of fused quartz, silicon and gallium arsenide lenses, with radii of one free space wavelength or less, are less than 0.2 dB. As the minimum diameter of a quartz lens is comparable with the spot size in free space, it should be possible to build an imaging lens array in which each lens will act as a separate imaging element.  相似文献   
10.
For the (aut)oxidation of toluene to benzyl hydroperoxide, benzyl alcohol, benzaldehyde, and benzoic acid, the thermochemical profiles for various radical‐generating reactions have been compared. A key intermediate in all of these reactions is benzyl hydroperoxide, the heat of formation of which has been estimated by using results from CBS‐QB3, G4, and G3B3 calculations. Homolytic O?O bond cleavage in this hydroperoxide is strongly endothermic and thus unlikely to contribute significantly to initiation processes. In terms of reaction enthalpies the most favorable initiation process involves bimolecular reaction of benzyl hydroperoxide to yield hydroxy and benzyloxy radicals along with water and benzaldehyde. The reaction enthalpy and free energy of this process is significantly more favorable than those for the unimolecular dissociation of known radical initiators, such as dibenzoylperoxide or dibenzylhyponitrite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号