首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
化学   7篇
物理学   3篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
排序方式: 共有10条查询结果,搜索用时 250 毫秒
1
1.
The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.  相似文献   
2.
The use of chemical modification of cellulosic fibre is applied in order to increase the hydrophobicity, hence improving the compatibility between the fibre and matrix bonding. In this study, the effect of propionic anhydride modification of kenaf fibre was investigated to determine the role of bionanocarbon from oil palm shell agricultural wastes in the improvement of the functional properties of bionanocomposites. The vinyl esters reinforced with unmodified and propionic anhydride modified kenaf fibres bio nanocomposites were prepared using 0, 1, 3, 5 wt% of bio-nanocarbon. Characterisation of the fabricated bionanocomposite was carried out using FESEM, TEM, FT-IR and TGA to investigate the morphological analysis, surface properties, functional and thermal analyses, respectively. Mechanical performance of bionanocomposites was evaluated according to standard methods. The chemical modification of cellulosic fibre with the incorporation of bionanocarbon in the matrix exhibited high enhancement of the tensile, flexural, and impact strengths, for approximately 63.91%, 49.61% and 54.82%, respectively. The morphological, structural and functional analyses revealed that better compatibility of the modified fibre–matrix interaction was achieved at 3% bionanocarbon loading, which indicated improved properties of the bionanocomposite. The nanocomposites exhibited high degradation temperature which signified good thermal stability properties. The improved properties of the bionanocomposite were attributed to the effect of the surface modification and bionanocarbon enhancement of the fibre–matrix networks.  相似文献   
3.
While the theoretical implications of models of DNA tile self-assembly have been extensively researched and such models have been used to design DNA tile systems for use in experiments, there has been little research testing the fundamental assumptions of those models. In this paper, we use direct observation of individual tile attachments and detachments of two DNA tile systems on a mica surface imaged with an atomic force microscope (AFM) to compile statistics of tile attachments and detachments. We show that these statistics fit the widely used kinetic Tile Assembly Model and demonstrate AFM movies as a viable technique for directly investigating DNA tile systems during growth rather than after assembly.  相似文献   
4.
The mechanism of the CH4 decomposition on the nickel (111) surface is investigatedby first principles calculations. The activation energy of each reaction is calculatedusing nudged elastic band method. The activation energy of hydrogen dissociation from aCH2 fragment isfound much lower than the one of a CH3 fragment. This result is consistent with the fact,observed in our previous molecular dynamics (MD) simulations, that the CH3 fragment is dissociated into aCH fragment and two hydrogen atoms spontaneously. The effects of finite temperatureat 1500 K on the decomposition reaction of a CH4 molecule and its fragments are also investigated usingconstraint MD method. While the temperature effects are barely visible inCH4 andCH2 dissociationprocesses, they reduce the activation free energy of hydrogen dissociation fromCH3 and CHfragments largely.  相似文献   
5.
DNA nanotubes provide a programmable architecture for molecular self-assembly and can serve as model systems for one-dimensional biomolecular assemblies. While a variety of DNA nanotubes have been synthesized and employed as models for natural biopolymers, an extensive investigation of DNA nanotube kinetics and thermodynamics has been lacking. Using total internal reflection microscopy, DNA nanotube polymerization was monitored in real time at the single filament level over a wide range of free monomer concentrations and temperatures. The measured polymerization rates were subjected to a global nonlinear fit based on polymerization theory in order to simultaneously extract kinetic and thermodynamic parameters. For the DNA nanotubes used in this study, the association rate constant is (5.99 ± 0.15) × 105 M–1 s–1, the enthalpy is 87.9 ± 2.0 kcal mol–1, and the entropy is 0.252 ± 0.006 kcal mol–1 K–1. The qualitative and quantitative similarities between the kinetics of DNA nanotubes, actin filaments, and microtubules polymerization highlight the prospect of building complex dynamic systems from DNA molecules inspired by biological architecture.  相似文献   
6.
In recent years, water pollution and pesticide accumulation in the food chain have become a serious environmental and health hazard problem. Direct determination of these contaminants is a difficult task due to their low concentration level and the matrix interferences. Therefore, an efficient separation and preconcentration procedure is often required prior to the analysis. With the advancement in nanotechnology, various types of magnetic core–shell nanoparticles have successfully been synthesized and received considerable attention as sorbents for decontamination of diverse matrices. Magnetic core–shell nanoparticles with surface modifications have the advantages of large surface‐area‐to‐volume ratio, high number of surface active sites, no secondary pollutant, and high magnetic properties. Due to their physicochemical properties, surface‐modified magnetic core–shell nanoparticles exhibit high adsorption efficiency, high rate of removal of contaminants, and easy as well as rapid separation of adsorbent from solution via external magnetic field. Such facile separation is essential to improve the operation efficiency. In addition, reuse of nanoparticles would substantially reduce the treatment cost. In this review article, we have attempted to summarize recent studies that address the preconcentration methods of pesticide residue analysis and removal of toxic contaminants from aquatic systems using magnetic core–shell nanoparticles as adsorbents.  相似文献   
7.
8.
The properties of titanium carbonitride (TiCN) can be controlled by maintaining the C―N ratio within the coating to a certain level. An experimental study was carried out to vary the composition and properties of TiCN using cathodic arc physical vapour deposition (CAPVD). The substrate used was tungsten carbide (WC-6Co), which was prepared in-house through a powder metallurgy process. In order to form the TiCxN1 − x coatings, titanium (Ti) was used as the cathode, while methane (CH4) and nitrogen (N2) gases were used as sources for C and N, respectively. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to investigate the composition, chemical state, and bonding structure of the deposited coatings. The results show that the composition, intensity of elements, lattice parameter, and d-value of TiCxN1 − x coatings were successfully varied by controlling the CH4 fraction (CH4/N2 ratio). With the increase in CH4 fraction, the intensity of C and N within the TiCxN1 − x coatings increased and decreased, respectively. Consequently, the C―Ti and C―N bonds were increased and N―Ti bonds were decreased.  相似文献   
9.
Indonesia has been blessed with excellent solar heat distribution, which can be used as renewable energy to heat water. Various technologies have been developed to utilize these inexhaustible thermodynamic resources, in the form of photons arrays, converted into concentrated heat for daily use, i.e., solar water heater. This renewable-based water heating system can provide significant energy efficiency, benefit the environment, and reduce energy use costs. This experimental study attempts to harvest the energy from the sun using a cylindrical through collector (CTC) type solar concentrator. The CTC was made of the solar reflective film (SRF) affixed to concentrator collector surfaces which was then mounted on an adjustable angle frame of the concentrator collector support. The heat generated from the concentrator was stored in water, and phase change material is embedded in the system to retain the heat longer. The research was carried out in Langsa City, Aceh, Indonesia. The results showed that water heaters using CTC systems could produce 16 L of hot water retained at 40–60 °C for four hours. With the addition of beeswax, the water temperature of the same capacity can be maintained at 40–60 °C for around 5 h. This technology demonstrated an excellent result that produces as much as 60 L of water per day, increasing solar thermal energy efficiency. This technology presented a great potential for replication or even for further development on an industrial scale.  相似文献   
10.
Fruits and vegetables are important components of a healthy diet. They are rich sources of vitamins and minerals, dietary fibre and a host of beneficial non-nutrient substances including plant sterols, flavonoids and other antioxidants. It has been reported that reduced intake of fruits and vegetables may increase the risk of non-communicable diseases (NCDs). Chili pepper, is a common and important spice used to enhance taste and nutrition. Over the years, reports have shown its potential as antioxidant and an anti-obesity agent. Obesity is a serious health concern as it may initiate other common chronic diseases. Due to the side effects of synthetic antioxidants and anti-obesity drugs, scientists are now focusing on natural products which produce similar effects to synthetic chemicals. This up-to-date review addresses this research gap and presents, in an accessible format, the nutritional, antioxidant and anti-obesity properties of different chili peppers. This review article serves as a reference guide for use of chili peppers as anti-obesity agents.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号