首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
化学   8篇
  2020年   5篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
A new electrochemical sensor based on Fe3O4@SiO2‐PANI‐Au nanocomposite was fabricated for modification of glassy carbon electrode (Fe3O4@SiO2‐PANI‐Au GCE). The Fe3O4@SiO2‐PANI‐Au nanocomposite was characterized by TEM, FESEM‐EDS‐Mapping, XRD, and TGA methods. The Fe3O4@SiO2‐PANI‐Au GC electrode exhibited an acceptable sensitivity, fast electrochemical response, and good selectivity for determination of quercetin. Under optimal conditions, the linear range for quercetin concentrations using this sensor was 1.0×10?8 to 1.5×10?5 mol L?1, and the limit of detection was 3.8×10?9 mol L?1. The results illustrated that the offered sensor could be a possible alternative for the measurement of quercetin in food samples and biological fluids.  相似文献   
2.
First, the extraction and preconcentration of ultratrace amounts of lead(II) ions was performed using microliter volumes of a task‐specific ionic liquid. The remarkable properties of ionic liquids were added to the advantages of microextraction procedure. The ionic liquid used was trioctylmethylammonium thiosalicylate, which formed a lead thiolate complex due to the chelating effect of the ortho‐positioned carboxylate relative to thiol functionality. So, trioctylmethylammonium thiosalicylate played the roles of both chelating agent and extraction solvent simultaneously. Hence, there is no need to use a ligand. The main parameters affecting the efficiency of the method were investigated and optimized. Under optimized conditions, this approach showed a linear range of 2.0–24.0 ng/mL with a detection limit of 0.0010 ng/mL. The proposed method was applied to the extraction and preconcentration of lead from red lipstick and pine leaves samples prior to electrothermal atomic absorption spectroscopic determination.  相似文献   
3.
In this work, the photocatalytic activity of the synthesized graphene oxide (GO)‐Fe3O4/TiO2 mesoporous photocatalysts was evaluated using chlorpyrifos (CP) as a contaminant. The nano‐photocatalyst was characterized by X‐ray diffraction, field emission scanning electron microscopy with energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, and specific surface area by the Brunauer–Emmett–Teller method. Using visible light, the GO‐Fe3O4/TiO2 mesoporous photocatalyst was investigated on the degradation of CP pesticide. The GO‐Fe3O4/TiO2 photocatalyst displayed a good photocatalytic activity, which was achieving 97% of CP degradation after 60 min. Finally, experiments were performed to evaluate GO‐Fe3O4/TiO2 mesoporous nanocatalyst activity on repeated applications; after several uses, its photocatalytic activity was retained, which indicated stability.  相似文献   
4.
Russian Journal of Electrochemistry - In the present study an electrochemical sensor has been produced for measuring riboflavin with high sensitivity and selectivity. Deferential pulse technique...  相似文献   
5.
Here, task‐specific ionic liquid solid‐phase extraction is proposed for the first time. In this approach, a thiourea‐functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid‐phase extraction column are used for the selective extraction and preconcentration of ultra‐trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5–40.0 ng/mL with the detection limit of 0.13 ng/mL (3sb/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents.  相似文献   
6.
In this research, a novel KIT-5/Bi2S3-Fe3O4 nanocomposite was prepared. The structure and morphology properties of the nanocomposite were well characterized by XRD, FESEM-EDS-mapping, TEM, and N2 adsorption–desorption. Benefiting from the visible light, the as-prepared KIT-5/Bi2S3-Fe3O4 nanocomposite exhibit significantly improved photocatalytic performance for the degradation of parathion. The optimum photocatalytic efficiency of KIT-5/Bi2S3-Fe3O4 nanocomposite was investigated with the central composite design using Design Expert software. The four critical variables affecting parathion degradation such as the concentration of parathion, pH, irradiation time, and amount of KIT-5/Bi2S3-Fe3O4 nanocatalyst. A polynomial function corresponding to degradation percent was obtained for the experimental data. The results showed that this catalyst has a good performance for the degradation of parathion.  相似文献   
7.
In the present research, Fe3O4 and WS2 nanoparticles immobilized on or in KIT-6 (KIT: Korea Institute of Science and Technology) pores (KIT-6/WS2-Fe3O4) were synthesized and studied as a photocatalyst for degradation of representative chlorpyrifos as an organophosphorus pesticide. In addition, the KIT-6/WS2-Fe3O4 photocatalyst was characterized by different methods such as TEM, FESEM-EDS-Mapping, XRD, and N2 adsorption/desorption surface area, in order to understand their morphology, structural, and physical properties. The photocatalytic performance of this photocatalyst was investigated for degradation of chlorpyrifos by visible light irritation. The effects of variables such as chlorpyrifos concentration, KIT-6/WS2-Fe3O4 nanocatalyst amount, pH, and irradiation time on chlorpyrifos degradation efficiency was studied by central composite design with response surface methodology. The optimum conditions for CP degradation were obtained by 50 mg KIT-6/WS2-Fe3O4 nanocatalyst, and 7.2 ppm chlorpyrifos solution with pH = 6, at 52 min. The pseudo-first-order model with rate constants equal to 0.069 min−1 as best choice efficiency described the chlorpyrifos degradation process according to Langmuir-Hinshelwood kinetic.  相似文献   
8.
Triclosan is broadly utilized as preservative or antiseptic in various cosmetic and personal care products. It becomes hazardous for environmental safety and human health more than a certain concentration. In this research, graphene oxide (GO) nanosheets were prepared by composing Fe3O4@Au nanostructure decorated GO together with polypyrrole (PPy) (Fe3O4@Au‐PPy/GO nanocomposite) in a facile way. The composite excellent increased the electrochemical response, presenting a high sensitive electrochemical method for triclosan detection. The synthesized Fe3O4@Au‐PPy/GO nanocomposite was characterized for its morphological, magnetically and structural properties by FESEM‐mapping, TEM, and XRD. The Fe3O4@Au‐PPy/GO nanocomposites modified glassy carbon electrodes (GCE), Fe3O4@Au‐PPy/GO GCE, showed a higher sensitivity good stability, reproducibility, lower LOD (2.5×10?9 M) and potential practical application in electrochemical detection of triclosan under optimized experimental conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号