首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
化学   38篇
物理学   3篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1978年   3篇
  1976年   1篇
  1973年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
Studies on the alkaloids in the leaves of Rhazya stricta have resulted in the isolation of a new alkaloid “rhazimine” (2) bearing a novel skeletal system closely related to the ajmaline group of alkaloids.  相似文献   
2.
We show here that reaction of the fungus, Fusarium oxysporum, with the aqueous heavy-metal ions Pb2+ and Cd2+ results in the one-step formation of the corresponding metal carbonates. The metal carbonates are formed by reaction of the heavy-metal ions with CO2 produced by the fungus during metabolism and thus provide a completely biological method for production of crystals of metal carbonates. The PbCO3 and CdCO3 crystals thus produced have interesting morphologies that are shown to arise because of interaction of the growing crystals with specific proteins secreted by the fungus during reaction. An additional advantage of this approach is that the reaction leads to detoxification of the aqueous solution and could have immense potential for bioremediation of heavy metals. Under conditions of this study, the metal ions are not toxic to the fungus, which readily grows after exposure to the metal ions.  相似文献   
3.
Proviral integration site for Moloney murine leukemia virus (Pim)-1/2 kinase overexpression has been identified in a variety of hematologic (e.g., multiple myeloma or acute myeloid leukemia (AML)) and solid (e.g., colorectal carcinoma) tumors, playing a key role in cancer progression, metastasis, and drug resistance, and is linked to poor prognosis. These kinases are thus considered interesting targets in oncology. We report herein the design, synthesis, structure–activity relationships (SAR) and in vitro evaluations of new quinoxaline derivatives, acting as dual Pim1/2 inhibitors. Two lead compounds (5c and 5e) were then identified, as potent submicromolar Pim-1 and Pim-2 inhibitors. These molecules were also able to inhibit the growth of the two human cell lines, MV4-11 (AML) and HCT-116 (colorectal carcinoma), expressing high endogenous levels of Pim-1/2 kinases.  相似文献   
4.
Summary Love wave travelling in a layer of uniform thickness overlying a half-space is assumed to be incident on two parallel but staggered perfectly weak half-planes lying in the upper layer. The diffracted field is calculated using the modified Wiener-Hopf technique and contour integration method. The diffracted waves satisfy the dispersion relations appropriate to different regions formed by the perfectly weak half-planes. To the memory of M. H. Kazi  相似文献   
5.
In recent years, nanomaterials have made their way into hundreds of biomedical, life-sciences and technological applications. One such nanomaterial of extreme importance is nanoalumina (Al2O3 nanoparticles). This nanomaterial is an epitome of diversity with applications exhibited in the fields of catalysis, cosmetics, theranostics, energy generation, biosensors, drug-delivery, tumor-regression, etc. However, problems persist in terms of biocompatibility, cost-effectiveness, reproducibility and mass-production of nanoalumina by the presently existent physical, chemical and biological methodologies. Herein, we for the first time are presenting a top-down biofabrication method by which size reduction of commercial bulk alumina/aluminum oxide (5 µm) into nanoalumina (5–25 nm) is carried out by a thermophilic fungus Humicola sp. within 96 h of reaction at just 50 °C. The so-formed nanoalumina is highly stable, water dispersible, fluorescent and natural protein capped; characterization engaged standard techniques. These nanoparticles exhibit anti-bacterial properties against Gram-positive Bacillus subtilis strain and may serve as broad spectrum bactericidal agents. We believe that our novel top-down approach may be extensively used in the facile, inexpensive, eco-friendly and reliable fabrication of abundant quantities of nanomaterials of different chemical compositions, sizes and shapes with better control and predictability over the properties as derived from their substrates. The mechanistic aspect of said protocol is underway.  相似文献   
6.
The interaction of TL(OH)3, with excess lactic acid indicated the formation of Tl(LA)3 where LA stands for the anion of lactic acid. The structure of the complex was predicted from elemental analyses and IR spectra. The thermal decomposition of the complex using TG, DTG and DTA gave supporting evidence for the predicted structure. The kinetics of thermal decomposition were also studied employing various computational methods.  相似文献   
7.
Acid phosphatase-I (Apase-I) from seeds of Nelumbo nucifera was purified to electrophoretic homogeneity by combination of ammonium sulfate precipitation, size-exclusion and ion exchange chromatography. SDS-PAGE of purified Apase-I gave a single band with molecular mass of 80 kDa under reducing and non-reducing conditions, indicating that the enzyme was a monomer. The purified enzyme showed maximum activity at 50°C and at pH 5. The Km, Vmax and Kcat for p-nitrophenyl phosphate were 132 μM, 10 μmol/min/mg and 6.7/sec respectively. Apase-I activity was strongly inhibited by Zn2+, W2+; weakly inhibited by Cu2+, Mo2+ and Cr6+ and moderately activated by Mg2+. The enzyme was shown to be thermolabile as it lost 50% of its activity at 50°C after incubation for 1 hour. The amino acid analysis of enzyme revealed high proportion of acidic amino acids, which is very similar to that of tomato Apase-I and lower than potato Apase.  相似文献   
8.
9.
Rice husk is a cheap agro-based waste material, which harbors a substantial amount of silica in the form of amorphous hydrated silica grains. However, there have been no attempts at harnessing the enormous amount of amorphous silica present in rice husk and its room-temperature biotransformation into crystalline silica nanoparticles. In this study, we address this issue and describe how naturally deposited amorphous biosilica in rice husk can be bioleached and simultaneously biotransformed into high value crystalline silica nanoparticles. We show here that the fungus Fusarium oxysporum rapidly biotransforms the naturally occurring amorphous plant biosilica into crystalline silica and leach out silica extracellularly at room temperature in the form of 2-6 nm quasi-spherical, highly crystalline silica nanoparticles capped by stabilizing proteins; that the nanoparticles are released into solution is an advantage of this process with significant application and commercial potential. Calcination of the silica nanoparticles leads to loss of occluded protein and to an apparently porous structure often of cubic morphology. The room-temperature synthesis of oxide nanomaterials using microorganisms starting from potential cheap agro-industrial waste materials is an exciting possibility and could lead to an energy-conserving and economically viable green approach toward the large-scale synthesis of oxide nanomaterials.  相似文献   
10.
Optimal orbital exponents are approximated by minimization of the reduced Hamiltonian orbital ground state energy. They appear to be as good as and are obtained at much less expense than the values derived by the usual SCF exponent optimization scheme. Partitioning of energy into 0-energy, 1-energy, and 2-energy (Absar and Coleman, Int. J. Quant. Chem. 10 , 319 (1976); Chem. Phys. Lett. 39 , 60 (1976)) is used to study the variation in the electronic energy surface upon variation of orbital exponents. The 1-energy operator, the natural orbitals of which are the reduced Hamiltonian orbitals, is compared with the SCF operator.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号