首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   10篇
数学   1篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2017年   1篇
  2013年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Research on Chemical Intermediates - The contributory effect of surface acidity is significant to desulfurize heavy recalcitrant organosulfur compounds effectively. This research explores the...  相似文献   
2.
Adverse effects associated with synthetic drugs in diabetes therapy has prompted the search for novel natural lead compounds with little or no side effects. Effects of phenolic compounds from Carpobrotus edulis on carbohydrate-metabolizing enzymes through in vitro and in silico methods were assessed. Based on the half-maximal inhibitory concentrations (IC50), the phenolic extract of the plant had significant (p < 0.05) in vitro inhibitory effect on the specific activity of alpha-amylase (0.51 mg/mL), alpha-glucosidase (0.062 mg/mL) and aldose reductase (0.75 mg/mL), compared with the reference standards (0.55, 0.72 and 7.05 mg/mL, respectively). Molecular interactions established between the 11 phenolic compounds identifiable from the HPLC chromatogram of the extract and active site residues of the enzymes revealed higher binding affinity and more structural compactness with procyanidin (−69.834 ± 6.574 kcal/mol) and 1,3-dicaffeoxyl quinic acid (−42.630 ± 4.076 kcal/mol) as potential inhibitors of alpha-amylase and alpha-glucosidase, respectively, while isorhamnetin-3-O-rutinoside (−45.398 ± 4.568 kcal/mol) and luteolin-7-O-beta-d-glucoside (−45.102 ± 4.024 kcal/mol) for aldose reductase relative to respective reference standards. Put together, the findings are suggestive of the compounds as potential constituents of C. edulis phenolic extract responsible for the significant hypoglycemic effect in vitro; hence, they could be exploited in the development of novel therapeutic agents for type-2 diabetes and its retinopathy complication.  相似文献   
3.
The reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride was used as a model to test the catalytic activity of copper(II) complexes containing N,O-chelating Schiff base ligands. In this study, a series of copper(II) complexes containing respective Schiff base ligands, N′-salicylidene-2-aminophenol (1), N′-salicylidene-2-aminothiazole (2), and N,N′-bis(salicylidene)-o-phenylenediamine (3), were synthesized and characterized by elemental analysis, Fourier transform infrared (FT-IR), UV-Visible (UV-Vis) and electron paramagnetic resonance (EPR) spectroscopies. The results from the 4-nitrophenol reduction showed that 3 has the highest catalytic activities with 97.5% conversion, followed by 2 and 1 with 95.2% and 90.8% conversions, respectively. The optimization of the catalyst amount revealed that 1.0 mol% of the catalyst was the most optimized amount with the highest conversion compared to the other doses, 0.5 mol% and 1.5 mol%. Recyclability and reproducibility tests confirmed that all three complexes were active, efficient, and possess excellent reproducibility with consistent catalytic performances and could be used again without a major decrease in the catalytic activity.  相似文献   
4.
Graphene as a material for optoelectronic design applications has been significantly restricted owing to zero bandgap and non-compatible handling procedures compared with regular microelectronic ones. In this work, nitrogen-doped reduced graphene oxide (N-rGO) with tunable optical bandgap and enhanced electrical conductivity was synthesized via a microwave-assisted hydrothermal method. The properties of the synthesized N-rGO were determined using XPS, FTIR and Raman spectroscopy, UV/vis, as well as FESEM techniques. The UV/vis spectroscopic analysis confirmed the narrowness of the optical bandgap from 3.4 to 3.1, 2.5, and 2.2 eV in N-rGO samples, where N-rGO samples were synthesized with a nitrogen doping concentration of 2.80, 4.53, and 5.51 at.%. Besides, an enhanced n-type electrical conductivity in N-rGO was observed in Hall effect measurement. The observed tunable optoelectrical characteristics of N-rGO make it a suitable material for developing future optoelectronic devices at the nanoscale.  相似文献   
5.
Platinum(II) complexes with various selenones (L) having the general formula [PtL2Cl2] were prepared and characterized by elemental analysis and, IR and NMR (1H, 13C, and 77Se) spectroscopies. A decrease in the IR frequency of the >C=Se mode and an upfield shift in 13C NMR for the >C=Se resonance of selenones are consistent with their selenium coordination to platinum(II). The NMR data show that the complexes are stable in solution and do not undergo equilibration at 297 K. The geometrical structures of the complexes were predicted theoretically (with DFT method) using Gaussian09 program. DFT calculations predicted that the trans configurations were up to 1.7 kcal/mol more stable than the cis forms in gas phase, while in solution form the cis isomers were predicted to be more stable. The UV–vis spectra of the two complexes, 6 and 7 were also recorded at room temperature for 24 h and it was observed that the complexes were stable and did not undergo decomposition. The in vitro antitumor properties of the complexes as well as of cisplatin were evaluated on two human cancer cell lines, HeLa (cervical cancer cells) and MCF7 (breast cancer cells) using MTT assay. The results indicated that the prepared complexes exerted significant inhibition on the selected cancer cells.  相似文献   
6.
This study assessed the groundwater quality around two municipal solid waste landfill sites, in the city of Bloemfontein, Free State Province, South Africa. The two landfill sites are located in two contrasting geological terrains, with both lacking some basic facilities found in a well-designed landfill. A total of eight groundwater samples were collected from pollution monitoring boreholes near the two landfill sites, with five samples representing the northern landfill site and three samples representing the southern landfill site. The samples were collected in the autumn and winter seasons to assess any possible seasonal variations. They were analysed for physicochemical (pH, electrical conductivity (EC), total dissolve solids (TDS), chemical oxygen demand (COD) and total organic carbon (TOC)) and microbiological parameters (Escherichia coli, total coliform). The results of the analysis showed that the waters from both landfills were generally dominated by Ca, Mg, SO4, and HCO3 ions. Some of the major anions and cations in the water samples were above the South African National Standard (SANS241:2015) and World Health Organisation (WHO) permissible limits for drinking water. Majority of the boreholes had total dissolved solids and electrical conductivity values exceeding the SANS 241:2015 and WHO permissible limits. Piper trilinear plots for the two landfill sites showed that Ca(Mg)HCO3 water type predominates, but Ca(Mg)SO4 and Ca(Mg)Cl were also found. These water types were further confirmed with expanded Durov diagrams, indicating that that the boreholes represented a water type that is seldom found which is undergoing ion exchange, typical of sulphate contamination. From the SAR diagrams, boreholes in the northern landfill site had a high salinity hazard with only one borehole in the southern landfill site having a high salinity hazard. The geology was found to play a significant role in the distribution of contaminants into the groundwater systems in the study area. The study concluded that the northern landfill site had a poorer water quality in comparison to the southern landfill site based on the analysed physicochemical parameters. However, the southern landfill site showed significant microbial contamination, due to the elevated amount of E. coli and total coliform concentrations. The high permeability of the weathered dolerites in the northern landfill site might have enabled the percolation of contaminants into the groundwater resulting in the poorer water quality.  相似文献   
7.
In this article, we investigate non-convex optimal control problems. We are concerned with a posteriori verification of sufficient optimality conditions. If the proposed verification method confirms the fulfillment of the sufficient condition then a posteriori error estimates can be computed. A special ingredient of our method is an error analysis for the Hessian of the underlying optimization problem. We derive conditions under which positive definiteness of the Hessian of the discrete problem implies positive definiteness of the Hessian of the continuous problem. The article is complemented with numerical experiments.  相似文献   
8.
9.
The expression of the efflux pump systems is the most important mechanism of antibiotic resistance in bacteria, as it contributes to reduced concentration and the subsequent inactivity of administered antibiotics. NorA is one of the most studied antibacterial targets used as a model for efflux-mediated resistance. The present study evaluated shikimate pathway-derived phenolic acids against NorA (PDB ID: 1PW4) as a druggable target in antibacterial therapy using in silico modelling and in vitro methods. Of the 22 compounds evaluated, sinapic acid (−9.0 kcal/mol) and p-coumaric acid (−6.3 kcal/mol) had the best and most prominent affinity for NorA relative to ciprofloxacin, a reference standard (−4.9 kcal/mol). A further probe into the structural stability and flexibility of the resulting NorA-phenolic acids complexes through molecular dynamic simulations over a 100 ns period revealed p-coumaric acid as the best inhibitor of NorA relative to the reference standard. In addition, both phenolic acids formed H-bonds with TYR 76, a crucial residue implicated in NorA efflux pump inhibition. Furthermore, the phenolic acids demonstrated favourable drug likeliness and conformed to Lipinski’s rule of five for ADME properties. For the in vitro evaluation, the phenolic acids had MIC values in the range 31.2 to 62.5 μg/mL against S. aureus, and E. coli, and there was an overall reduction in MIC following their combination with ciprofloxacin. Taken together, the findings from both the in silico and in vitro evaluations in this study have demonstrated high affinity of p-coumaric acid towards NorA and could be suggestive of its exploration as a novel NorA efflux pump inhibitor.  相似文献   
10.
It is undisputed that there is a paradigm shift in the global trend of crude oil towards being more sour and heavier than usual light sources. Consequently, the hydrotreating activity becomes a bottleneck with high content of S, N, metals and other impurities than expected. On the other hand, the price of petroleum products lately witnessed instability and fell to the lowest average price (<USD 20) in recent times. In the same vein, the regulation to control the emission of toxic compounds in the atmosphere become stricter as promulgated by various policymakers. In this sense, robust hydrotreating catalysts with characteristics efficient catalytic activity, selectivity and stability are highly desirable. Recently, different approaches have been used to improve and cushion the unprecedented effect emanated from economic, social and environmental challenges posed by heavy and sour crude sources, price instability of the refined products and regulation to lower the sulfur to minimum level or zero parts per millions (ppm). Importantly, the role of support in catalysis cannot be over emphasized, whilst the surface area and porosity, mechanical and thermal stability, dispersion of active metals, acidity/basicity have been greatly improved, the increased activity, stability and selectivity has been observed significantly. In this review, hybrid supports based on aluminosilicates (zeolitic types) and other notable supports from recent literatures were explored and discussed for Ni(Co)Mo(W) supported catalysts for hydrodesulfurization (HDS) activity of heavy organosulfur molecules. The emphasis on the hybrid supports’ varied characteristics for HDS of organosulfur molecules, where there are necessities for fast diffusion of reactants and products, better dispersion of MoS2 crystallites, high surface area and pore volume, and increased acidity of the catalysts are greatly emphasized. Furthermore, the progress made so far on different HDS active phases viz. noble metals, metal phosphides, intermetallic silicides, carbides and iron-zinc are highlighted in this write-up, irrespective of the support composition in the supported catalysts formulations. The need for application of predictive tools, like machine learning (ML) in the design and development of HDS catalysts, and performance evaluation of HDS activity towards achieving better catalytic operation was briefly highlighted. Finally, the review will serve as a summary of scientific efforts in this regards and bridge a gap for the newcomers to investigate the topic in a better way through proper selection and efficient catalysts design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号