首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   4篇
物理学   2篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The Ga-Ag-Li|Li7La3Zr1.89Al0.15O12|(Li2O–B2O3–V2O5 + Fe) all-solid-state electrochemical cell has been designed with a simple sintering process. The Li7La3Zr1.89Al0.15O12 solid electrolyte was prepared by sol-gel method. The lithium borovanadate glass was obtained by a convenient melt quenching technique. Cycliс voltammetry has shown that the current densities of the cell at 300 °C can reach several hundreds of μA cm?2. At this temperature, the single cell voltage is about 3.2 and 0.8 V in the charged and discharged state, correspondingly. This cell produces a current enough to make a single LED of white color working. The cell surface discharge capacity exceeds 230 μAh cm?2.  相似文献   
2.
Russian Journal of Applied Chemistry - The development of electrochemical generators based on solid oxide fuel cells requires the development of sealant materials that would ensure gastight...  相似文献   
3.
Russian Journal of Electrochemistry - Amorphous glasses of the composition xMgO–yP2O5– (100 – x – y)V2O5 with x = 1–5 and y = 5, 10, and 15 mol % are obtained by the...  相似文献   
4.
The influence of the cerium oxide concentration on the properties of glasses and glass ceramics of the SiO2–Al2O3–CaO–Na2O–MgO–K2O–B2O3–CeO2 system as potential adhesive and sealing materials for solid oxide fuel cells was studied. According to the data of differential scanning calorimetry, variation of the CeO2 concentration does not appreciably influence the glass transition and crystallization temperatures of glasses. As the cerium oxide concentration is increased, the linear thermal expansion coefficient increases for the glasses but decreases for the partially crystalline samples. The gluing temperature of the glass sealants prepared allows their use for joining YSZ solid electrolytes with interconnectors of Crofer22APU type in solid oxide fuel cells..  相似文献   
5.
Lithium vanadium-borate glasses with the composition of 0.3Li2O–(0.7-x)B2O3xV2O5 (x?=?0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, and 0.475) were prepared by melt-quenching method. According to differential scanning calorimetry data, vanadium oxide acts as both glass former and glass modifier, since the thermal stability of glasses decreases with an increase in V2O5 concentration. Fourier transform infrared spectroscopy data show that the vibrations of [VO4] structural units occur at V2O5 concentration of 45 mol%. It is established that the concentration of V4+ ions increases exponentially with the growth of vanadium oxide concentration. Direct and alternative current measurements are carried out to estimate the contribution both electronic and ionic conductivities to the value of total conductivity. It is shown that the electronic conductivity is predominant in the total one. The glass having the composition of 0.3Li2O-0.275B2O3-0.475V2O5 shows the highest electrical conductivity that has the value of 7.4?×?10?5 S cm?1 at room temperature.  相似文献   
6.

A series of Na2O-MgO-TiO2-Al2O3-B2O3-SiO2 glasses promising as sealants for solid oxide fuel cells are prepared. The glassy state is confirmed by X-ray diffraction analysis, and the elemental composition is determined by inductively coupled plasma atomic emission spectroscopy. The coefficient of thermal expansion (CTE) is calculated from the dilatometric data; it varies within (69–77) × 10?7 K?1 and increases with the MgO to Al2O3 concentration ratio. The CTE calculation by the Appen method gives the results that are underestimated by 5–8% relative to the experimental data. The temperature dependences of the heat capacity of the glasses are determined by differential scanning calorimetry and calculated using the Kopp-Neumann rule. Comparison of the calculated values with the experimental data shows that the Kopp-Neumann rule is observed for the systems under consideration with relatively high accuracy. The sensitivity of different methods in determination of the glass transition point has been evaluated.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号