首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   8篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2011年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Research on Chemical Intermediates - This work is described as an environmental friendly approach for Cu(OAc)2 entrapped on ethylene glycol-modified melamine–formaldehyde-based polymeric...  相似文献   
2.
Journal of Cluster Science - Nanoparticles refer to ultrafine particles with the particle size at nanoscale. When metals and metal oxides were synthesized at nanoscale, by their unique properties...  相似文献   
3.
A well‐defined triazole functionalized porous triazine based polymers act as solid heterogeneous catalyst after incorporating palladium oxide nanoparticles (PdO@TTAS) have been synthesized and thoroughly characterized by various techniques such as, FT‐IR, UV‐DRS, solid state 13C CP‐MAS, XPS, powder X‐ray diffraction, TGA, SEM and TEM analysis has been detailed illustrated. It is important to note that synthesized catalytic performance for carbonylation of aryl halides (X = I, Br) with EDC.HCl (N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride), and formic acid was found to be an effective CO source in the presence of triethylamine as a base and DMF as a solvent medium at 80 °C for about 3 hr. The PdO@TTAS catalyst exhibits superior catalytic performance and along with good yield (up to 90%). Moreover, studying the heterogeneity and reusability of the environmentally friendly solid catalyst can be easily separated by simple filtration and then recycled for several times. In this reaction method, we avoided ligand, additive, promoters and CO gas, due to additional problem arise by using gaseous CO, highly toxic greenhouse gases and high pressurized reaction setup.  相似文献   
4.
Patulin (PAT) and citrinin (CTN) are the most common mycotoxins produced by Penicillium and Aspergillus species and are often associated with fruits and fruit by-products. Hence, simple and reliable methods for monitoring these toxins in foodstuffs are required for regular quality assessment. In this study, we aimed to establish a cost-effective method for detection and quantification of PAT and CTN in pome fruits, such as apples and pears, using high-performance liquid chromatography (HPLC) coupled with spectroscopic detectors without the need for any clean-up steps. The method showed good performance in the analysis of these mycotoxins in apple and pear fruit samples with recovery ranges of 55–97% for PAT and 84–101% for CTN, respectively. The limits of detection (LOD) of PAT and CTN in fruits were 0.006 µg/g and 0.001 µg/g, while their limits of quantification (LOQ) were 0.018 µg/g and 0.003 µg/g, respectively. The present findings indicate that the newly developed HPLC method provides rapid and accurate detection of PAT and CTN in fruits.  相似文献   
5.

The present work describes the C-alkylation reactions of fluorene and curcumin catalyzed by a new phosphonium salt, benzene-1,3,5-triyltris(methylene))tris(triphenylphosphonium)bromide, as a multi-site phase-transfer catalyst (MPTC). The catalytic efficiencies were found to be quite effective for di- and tetra-alkylation reactions with very excellent yields under mild base and low concentrations of the catalyst. The synthesized MPTC 3 have privileged catalytic activity compared to commercially available single-site phase-transfer catalysts.

  相似文献   
6.
Research on Chemical Intermediates - A template consisting of Pd(OAc)2 immobilized on imine-functionalized microporous covalent triazine polymer network (Pd/TATAE) was synthesized and found to be...  相似文献   
7.
A bio-nanofilm consisting of a tetrad nanomaterial (nanotubes, nanoparticles, DNA, polymer) was fabricated utilizing in situ reduction and noncovalent interactions and it displayed effective antibacterial activity and biocompatibility. This bio-nanofilm was composed of homogenous silver nanoparticles (AgNPs) coated on single-walled carbon nanotubes (SWCNTs), which were later hybridized with DNA and stabilized in poly(vinyl alcohol) (PVA) in the presence of a surfactant with the aid of ultrasonication. Electron microscopy and bio-AFM (atomic force microscopy) images were used to assess the morphology of the nanocomposite (NC) structure. Functionalization and fabrication were examined using FT–Raman spectroscopy by analyzing the functional changes in the bio-nanofilm before and after fabrication. UV–visible spectroscopy and X-ray powder diffraction (XRD) confirmed that AgNPs were present in the final NC on the basis of its surface plasmon resonance (370 nm) and crystal planes. Thermal gravimetric analysis was used to measure the percentage weight loss of SWCNT (17.5%) and final SWCNT-AgNPs-DNA/PVA (47.7%). The antimicrobial efficiency of the bio-nanofilm was evaluated against major pathogenic organisms. Bactericidal ratios, zone of inhibition, and minimum inhibitory concentration were examined against gram positive and gram negative bacteria. A preliminary cytotoxicity analysis was conducted using A549 lung cancer cells and IMR-90 fibroblast cells. Confocal laser microscopy, bio-AFM, and field emission scanning electron microscopy (FE-SEM) images demonstrated that the NCs were successfully taken up by the cells. These combined results indicate that this bio-nanofilm was biocompatible and displayed antimicrobial activity. Thus, this novel bio-nanofilm holds great promise for use as a multifunctional tool in burn therapy, tissue engineering, and other biomedical applications.  相似文献   
8.
Greigite is a Fe-S-containing complex having magnetic properties mainly synthesized in the solution. In the present study, greigite was synthesized by a coprecipitation method at different pH's and reaction times. The greigite phase was analyzed by the X-ray diffraction (XRD) method at an optimum pH of 3.0 and reaction time of 10 min, respectively. The magnetization characterization by superconducting quantum interference device (SQUID) revealed that the magnetic saturation was obtained at 16.1538 (emu/g). The inductive heating property of the greigite nanoparticles was carried out by induction heater power cube (IHPC) in an alternating current magnetic field and the results indicated that the heating effect was significant. Transmission electron microscopy (TEM) revealed that the size of the greigite was around 50-100 nm and the edges of nanoparticles have no clear boundary or distinctive morphology. Studies on LDH and WST-I assay revealed low cytotoxicity at greigite concentrations of 1 mg/ml. In vitro experiments suggested that cancerous cells, human lung adenocarcinoma epithelial cell line (A549), had the ability to become more damaged under AC magnetic field than the normal human lung cells (HFL-1).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号