首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   9篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
A series of dinuclear copper(II) complexes has been synthesized with the aim to investigate their applicability as potential structure and function models for the active site of catechol oxidase enzyme. They have been characterized by routine physicochemical techniques as well as by X-ray single-crystal structure analysis: [Cu 2(H 2L2 (2))(OH)(H 2O)(NO 3)](NO 3) 3.2H 2O ( 1), [Cu(HL1 (4))(H 2O)(NO 3)] 2(NO 3) 2.2H 2O ( 2), [Cu(L1 (1))(H 2O)(NO 3)] 2 ( 3), [Cu 2(L2 (3))(OH)(H 2O) 2](NO 3) 2, ( 4) and [Cu 2(L2 (1))(N 3) 3] ( 5) [L1 = 2-formyl-4-methyl-6R-iminomethyl-phenolato and L2 = 2,6-bis(R-iminomethyl)-4-methyl-phenolato; for L1 (1) and L2 (1), R = N-propylmorpholine; for L2 (2), R = N-ethylpiperazine; for L2 (3), R = N-ethylpyrrolidine, and for L1 (4), R = N-ethylmorpholine]. Dinuclear 1 and 4 possess two "end-off" compartmental ligands with exogenous mu-hydroxido and endogenous mu-phenoxido groups leading to intermetallic distances of 2.9794(15) and 2.9435(9) A, respectively; 2 and 3 are formed by two tridentate compartmental ligands where the copper centers are connected by endogenous phenoxido bridges with Cu-Cu separations of 3.0213(13) and 3.0152(15) A, respectively; 5 is built by an end-off compartmental ligand having exogenous mu-azido and endogenous mu-phenoxido groups with a Cu-Cu distance of 3.133(2) A (mean of two independent molecules). The catecholase activity of all of the complexes has been investigated in acetonitrile and methanol medium by UV-vis spectrophotometric study using 3,5-di- tert-butylcatechol (3,5-DTBC) and tetrachlorocatechol (TCC) as substrates. In acetonitrile medium, the conversion of 3,5-DTBC to 3,5-di- tert-butylbenzoquinone (3,5-DTBQ) catalyzed by 1- 5 is observed to proceed via the formation of two enzyme-substrate adducts, ES1 and ES2, detected spectroscopically for the first time. In methanol medium no such enzyme-substrate adduct has been detected, and the 3,5-DTBC to 3,5-DTBQ conversion is observed to be catalyzed by 1- 5 very efficiently. The substrate TCC forms an adduct with 2- 5 without performing further oxidation to TCQ due to the high reduction potential of TCC (in comparison with 3,5-DTBC). But most interestingly, 1 is observed to be effective even in TCC oxidation, a process never reported earlier. Kinetic experiments have been performed to determine initial rate of reactions (3,5-DTBC as substrate, in methanol medium) and the activity sequence is 1 > 5 > 2 = 4 > 3. A treatment on the basis of Michaelis-Menten model has been applied for kinetic study, suggesting that all five complexes exhibit very high turnover number, especially 1, which exhibits turnover number or K cat of 3.24 x 10 (4) (h (-1)), which is approximately 3.5 times higher than the most efficient catalyst reported to date for catecholase activity in methanol medium.  相似文献   
2.
Linkage isomers trans-bis(N-propyl-1,2-diaminoethane)dinitronickel(II) (brown, 1), trans-bis(N-isopropyl-1,2-diaminoethane)dinitritonickel(II) (blue-violet, 2a) and trans-bis(N-isopropyl-1,2-diaminoethane)dinitronickel(II) (brown, 2b) have been synthesized from solution and X-ray single crystal structure analysis of complex (1) has been performed. Simultaneous TG-DTA analyses reveal that complex (1) exhibits two successive phase transitions before to undergo decomposition (initial temperature of decomposition, Ti = 215 °C). The first one is reversible (82–98 °C; ΔH = 1.75 kJ mol−1 for heating and 93–77 °C; ΔH = −1.65 kJ mol−1 for cooling) and the second one is irreversible endothermic (135–150 °C kJ mol−1; ΔH = 1.80 kJ mol−1) phase transition. No visual color changes are observed in any of the two transitions. The causes related to the first phase transition remain unexplored. However, on the basis of IR spectral studies the second phase transition is supposed to be due to conformational changes of the diamine chelate rings. On the other hand, complexes (2a) and (2b) undergo decomposition without showing any phase transition [Ti = 185 and 195 °C for (2a) and (2b), respectively].  相似文献   
3.
A series of mixed halide–dicyanamide and halide complexes of cadmium(II) mediated by 2-aminoalkyl-pyridine ligands [2-aminomethylpyridine (ampy) and 2-aminoethylpyridine (aepy)] have been synthesized. Five of them, [CdCl(dca)(aepy)]n (1), [CdBr(dca)(ampy)]n (2), [CdCl(dca)(ampy)]n (3) (dca = dicyanamide); [CdI2(aepy)]n (4), and [CdI2(ampy)]n (5), (dca = dicyanamide) have been characterized by X-ray single crystal structure analysis. The structural determination shows that the compounds are 1D coordination polymers, with the exception of 3 that gives origin to a 2D sheet-like network. The ampy and aepy ligands (also with the occurrence of dca anions in 13) reveal to be useful ancillary fragments for the construction of unprecedented Cd–halide polymeric species. The crystal packing shows that the dimensionality of all compounds is enlarged to 2D, and 3D in the case of complex 3, through π–π interactions occurring between the pyridine rings. All the species exhibit interesting luminescence property in solution as well in solid state which is originated from ligand-centered π–π transitions. The fluorescence band maxima and fluorescence efficiency (in methanol) are found to be dependent not only on the pyridine ligand but also on the type of halide, and the co-ligand. Solid state luminescent study implies that π–π interactions occurring between pyridine rings are also important in controlling the fluorescence intensity. Amongst the synthesized complexes reported, complex 5 exhibits the highest fluorescence efficiency in methanol.  相似文献   
4.
Three new polymeric complexes of cadmium(II) with imidazole and its derivatives [imidazole (Im), benzimidazole (Bim) and 1-methylimidazole (Mim)] mediated by thiocyanate and dicyanamide (dca) anions have been synthesized and characterized by X-ray single crystal structure analysis. The structure analyses reveal that complexes [Cd(SCN)2(Bim)2]n (1) and [Cd(dca)2(Im)2]n (2) are 1D coordination polymers, whereas complex [Cd(dca)2(Mim)2]n (3) adopts a 2D network of (4, 4) topology and thereby suggests that the dimensionality of the coordination polymers are affected by the choice of the counter anions and by the organic ligands. All the species exhibit interesting luminescence property in methanol and in solid state originated from ligands-centered π-π* transitions. The π-π interactions occurring between organic rings (Im, Mim, and Bim) are observed to be important in controlling the fluorescence property of the species.  相似文献   
5.
Structural Chemistry - Sandwich complexes find their interests among the chemists after the breakthrough discovery of ferrocene. Since then, a number of sandwich and half-sandwich complexes were...  相似文献   
6.
Metal-metal triple bonds featuring s-block element have not been reported until now. Only Be−Be double bonds between have been predicted theoretically based on the intuitive electron donation from four s1 type electron-donating ligands. Herein, we theoretically predicted a novel species featuring a Be−Be triple bond in the Li6Be2 molecule. The molecule was found to be thermodynamically stable. The presence of the triple bond was confirmed by adaptive natural density partitioning (AdNDP), electron localization function (ELF), and atoms in molecules (AIM) analyses. Moreover, the mechanical strength of the Be−Be triple bond was analyzed by using compliance matrix, pointing towards its ultra-weak nature.  相似文献   
7.
Five dinuclear copper(II) complexes, [Cu2L1(N3)2·2H2O] (1), [Cu2L2(N3)2·2H2O] (2), [Cu2L3(N3)2·2H2O] (3), [Cu2L4(N3)2·2H2O] (4) and [Cu2L5(N3)2·2H2O] (5) of Robson type macrocyclic Schiff-base ligands derived from [2 + 2] condensation of 4-methyl-2,6-diformylphenol with 1,3-diaminopropane (H2L1), 1,2-diaminoethane (H2L2), 1,2-diaminopropane (H2L3), 1,2-diamino-2-methylpropane (H2L4) and 1,2-diaminocyclohexane (H2L5), respectively have been synthesized and characterized. Catecholase activity of those complexes using 3,5-di-tert-butylcatechol as substrate has been investigated in two solvents, methanol and acetonitrile. The role of the solvent and of the steric properties of the macrocyclic ligand of these complexes on their catecholase activity has been examined thoroughly. Acetonitrile is observed to be a better solvent than methanol as far as their catalytic activity is concerned. However, methanol reveals to be a better choice to identify the enzyme–substrate adduct. The investigation also prompted that chelate ring size does affect on the catalytic efficiency: 6-membered ring (as in H2L1) exhibits better activity than its 5-membered counterpart (as in H2L2). The activity of the 5-membered counter parts also depend upon the steric factor. Moreover, the catalytic activity of the complexes is enhanced to a significant extent by increasing the bulkiness of the substituents on the backbone of macrocyclic H2L2 ligands.  相似文献   
8.
An extended computational approach has been utilized to explore the reactions of acids with carbonyl oxide, also known as Criegee intermediate (CI). The reactions were explored inside a water cluster containing 50 water molecules. All possibilities of product formation were considered. Among the considered acids, the rate of 1,4-insertion follows the order HCOO < HCl < HNO3. The most stable products of the reactions between the considered acids and CI have been identified.  相似文献   
9.
Four new coordination polymers of cadmium(II) with hexamethylenetetramine (htm) have been synthesized and characterized by routine physicochemical techniques as well as by X-ray single crystal structure analysis. They are [CdBr(htm)(SCN)(H2O)2·CH3OH]n (1), [CdI(htm)(SCN)(H2O)2·0.5(CH3OH)]n (2), [Cd2(htm)3(SCN)4(H2O)]n·nH2O (3) and [Cd3Br6(htm)2(H2O)5·(htm)(H2O)6]n (4). Complexes 1, 2 and 3 exhibit 1D polymeric structure and complex 4 shows a 2D undulated layered arrangement, containing Cd6(htm)6 hexagonal units as building block, which extended to a 3D supramolecular architecture through hydrogen bonding. Thorough thermal investigation suggest that as far as the thermal stability of Cd(II)-htm bond is concerned it attains the maximum in complex 1 and minimum in complex 4. In case of complex 3 the thermal study inferred that CdS end product was obtained at ∼730 °C, whereas in case of other complexes the thermally stable end product remained unidentified. Solid state fluorescence study shows that all the complexes are luminescent at room temperature except complex 3.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号