首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2010年   1篇
  2009年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
PHOTOINHIBITION OF CHLOROPLAST REACTIONS   总被引:2,自引:0,他引:2  
Abstract— An attemlpt was made to localize the site of photoinhibition of photosynthesis by measuring the decay of various chloroplast reactions after exposure to very strong light. A11 substrate reductions coupled to oxygen evolution as well as photophosphorylation mediated by PMS, proved equally sensitive to photoinhibition. Reactions involving only the long wave photosystem, such as TPN reduction with ascorbate as electron donor and photooxidation of cytochromec by detergent-treated chloroplasts were sensitive to a lower degree.
Photoinhibition irreversibly annihilated the 'variable' fraction of fluorescence emission —it decreased the steady state yield 2-3 fold and abolished the slow rise of the emission at the onset of illurnination.
It is concluded that the primary site of light inactivation is in, or close to, the trapping centers of the oxygen evolving step of photosynthesis. Pre-illumination leaves these traps in a state capable of draining light from sensitizing pigments but unable to perform useful photochemistry.  相似文献   
2.
Force field based energy minimization of molecular structures is a central task in computational chemistry and biology. Solving this problem usually requires efficient local minimization techniques, i.e., iterative two‐step methods that search first for a descent direction and then try to estimate the step width. The second step, the so called line search, typically uses polynomial interpolation schemes to estimate the next trial step. However, dependent on local properties of the objective function alternative schemes may be more appropriate especially if the objective function shows singularities or exponential behavior. As the choice of the best interpolation scheme cannot be made a priori, we propose a new consensus line search approach that performs several different interpolation schemes at each step and then decides which one is the most reliable at the current position. Although a naive consensus approach would lead to severe performance impacts, our method does not require additional evaluations of the energy function, imposing only negligible computational overhead. Additionally, our method can be easily adapted to the local behavior of other objective functions by incorporating suitable interpolation schemes or omitting non‐fitting schemes. The performance of our consensus line search approach has been evaluated and compared to established standard line search algorithms by minimizing the structures of a large set of molecules using different force fields. The proposed algorithm shows better performance in almost all test cases, i.e., it reduces the number of iterations and function and gradient evaluations, leading to significantly reduced run times. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   
3.
We present a Lamarckian genetic algorithm (LGA) variant for flexible ligand‐receptor docking which allows to handle a large number of degrees of freedom. Our hybrid method combines a multi‐deme LGA with a recently published gradient‐based method for local optimization of molecular complexes. We compared the performance of our new hybrid method to two non gradient‐based search heuristics on the Astex diverse set for flexible ligand‐receptor docking. Our results show that the novel approach is clearly superior to other LGAs employing a stochastic optimization method. The new algorithm features a shorter run time and gives substantially better results, especially with increasing complexity of the ligands. Thus, it may be used to dock ligands with many rotatable bonds with high efficiency. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   
4.
We present a novel method for the local optimization of molecular complexes. This new approach is especially suited for usage in molecular docking. In molecular modeling, molecules are often described employing a compact representation to reduce the number of degrees of freedom. This compact representation is realized by fixing bond lengths and angles while permitting changes in translation, orientation, and selected dihedral angles. Gradient‐based energy minimization of molecular complexes using this representation suffers from well‐known singularities arising during the optimization process. We suggest an approach new in the field of structure optimization that allows to employ gradient‐based optimization algorithms for such a compact representation. We propose to use exponential mapping to define the molecular orientation which facilitates calculating the orientational gradient. To avoid singularities of this parametrization, the local minimization algorithm is modified to change efficiently the orientational parameters while preserving the molecular orientation, i.e. we perform well‐defined jumps on the objective function. Our approach is applicable to continuous, but not necessarily differentiable objective functions. We evaluated our new method by optimizing several ligands with an increasing number of internal degrees of freedom in the presence of large receptors. In comparison to the method of Solis and Wets in the challenging case of a non‐differentiable scoring function, our proposed method leads to substantially improved results in all test cases, i.e. we obtain better scores in fewer steps for all complexes. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   
5.
Photoinhibition of chloroplast reactions   总被引:3,自引:0,他引:3  
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号