首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
化学   32篇
物理学   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   5篇
  2009年   3篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2002年   3篇
  1979年   1篇
排序方式: 共有33条查询结果,搜索用时 46 毫秒
1.
Matrix-assisted laser desorption/ionization (MALDI) coupled with ion mobility–mass spectrometry (IM–MS) provides a rapid (μs–ms) means for the two-dimensional (2D) separation of complex biological samples (e.g., peptides, oligonucleotides, glycoconjugates, lipids, etc.), elucidation of solvent-free secondary structural elements (e.g., helices, β-hairpins, random coils, etc.), rapid identification of post-translational modifications (e.g., phosphorylation, glycosylation, etc.) or ligation of small molecules, and simultaneous and comprehensive sequencing information of biopolymers. In IM–MS, protein-identification information is complemented by structural characterization data, which is difficult to obtain using conventional proteomic techniques. New avenues for enhancing the figures of merit (e.g., sensitivity, limits of detection, dynamic range, and analyte selectivity) and optimizing IM–MS experimental parameters are described in the context of deriving new information at the forefront of proteomics research.  相似文献   
2.
Fully integrated : Mass spectrometry has been integrated into a detection scheme for microdroplets that are created within microfluidic channels (see picture, scale bar 200 μm). This technique allows droplets to be identified based on the compounds they contain, and combines fluorescence screening with MS analysis. These experiments indicate how similar approaches can be applied to the ambitious goals of on‐chip protein evolution and chemical synthesis.

  相似文献   

3.
4.
5.
The application of mass spectrometry (MS) to the study of progressively larger and more complex macromolecular assemblies is proving increasingly useful for structural biologists. The scope of this approach has recently been widened through the application of a tandem MS procedure. This two-step technique involves the selection of specific assemblies in the gas phase and inducing their dissociation through collisions with argon atoms. Here, we investigate the mechanism of this process and show that dissociation of subunits from a macromolecular assembly follows a sequential pathway, with the partitioning of charge between the dissociation products governed primarily by their relative surface areas. Using this basis of understanding, we highlight differences in the dissociation pathways of three related macromolecular assemblies and show how these are a direct consequence of changes in both local and global oligomeric organization.  相似文献   
6.
Maturation of the nickel-containing urease of Klebsiella aerogenes is facilitated by the UreD, UreF, and UreG accessory proteins along with the UreE metallo-chaperone. A fusion of the maltose binding protein and UreD (MBP-UreD) was co-isolated with UreF and UreG in a soluble complex possessing a (MBP-UreD:UreF:UreG)2 quaternary structure. Within this complex a UreF:UreF interaction was identified by chemical cross-linking of the amino termini of its two UreF protomers, as shown by mass spectrometry of tryptic peptides. A pre-activation complex was formed by the interaction of (MBP-UreD:UreF:UreG)2 and urease. Mass spectrometry of intact protein species revealed a pathway for synthesis of the urease pre-activation complex in which individual hetero-trimer units of the (MBP-UreD:UreF:UreG)2 complex bind to urease. Together, these data provide important new insights into the structures of protein complexes associated with urease activation.
?  相似文献   
7.
Multiprotein complexes are central to our understanding of cellular biology, as they play critical roles in nearly every biological process. Despite many impressive advances associated with structural characterization techniques, large and highly-dynamic protein complexes are too often refractory to analysis by conventional, high-resolution approaches. To fill this gap, ion mobility-mass spectrometry (IM-MS) methods have emerged as a promising approach for characterizing the structures of challenging assemblies due in large part to the ability of these methods to characterize the composition, connectivity, and topology of large, labile complexes. In this Critical Insight, we present a series of bioinformatics studies aimed at assessing the information content of IM-MS datasets for building models of multiprotein structure. Our computational data highlights the limits of current coarse-graining approaches, and compelled us to develop an improved workflow for multiprotein topology modeling, which we benchmark against a subset of the multiprotein complexes within the PDB. This improved workflow has allowed us to ascertain both the minimal experimental restraint sets required for generation of high-confidence multiprotein topologies, and quantify the ambiguity in models where insufficient IM-MS information is available. We conclude by projecting the future of IM-MS in the context of protein quaternary structure assignment, where we predict that a more complete knowledge of the ultimate information content and ambiguity within such models will undoubtedly lead to applications for a broader array of challenging biomolecular assemblies.
Graphical Abstract ?
  相似文献   
8.
9.
Experiments were conducted to determine the extent to which listeners can discriminate between different combinations of interaural time and intensity for binaural stimulus configurations which eliminate loudness, lateralization, and image-diffuseness cues. A two-interval forced choice paradigm was used, and the task of the subject was to determine the order of two stimuli, each of which was a slowly gated 500-Hz tone with a combination of interaural time and intensity differences that resulted in a centered primary spatial image. The two stimuli to be discriminated were symmetric in that they differed only in the polarity of their interaural differences. Also, in order to reduce artifacts introduced by variations in the coupling of the earphones to the head, acoustic monitoring and compensation was performed both before and after each experimental run. The performance of the two most highly trained subjects is consistent with previous experimental results that indicate an incomplete trading of interaural time and intensity information. The subjective perceptions of these observers are not consistent with previous studies that describe a "time image" and a "time-intensity traded" spatial image.  相似文献   
10.
1 [2] [3] [4] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号