首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
化学   14篇
物理学   7篇
  2016年   1篇
  2012年   1篇
  2011年   4篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  1987年   2篇
  1978年   1篇
  1977年   1篇
  1973年   3篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Aluminum metal is a promising anode material for next generation rechargeable batteries owing to its abundance, potentially dendrite‐free deposition, and high capacity. The rechargeable aluminum/sulfur (Al/S) battery is of great interest owing to its high energy density (1340 Wh kg?1) and low cost. However, Al/S chemistry suffers poor reversibility owing to the difficulty of oxidizing AlSx. Herein, we demonstrate the first reversible Al/S battery in ionic‐liquid electrolyte with an activated carbon cloth/sulfur composite cathode. Electrochemical, spectroscopic, and microscopic results suggest that sulfur undergoes a solid‐state conversion reaction in the electrolyte. Kinetics analysis identifies that the slow solid‐state sulfur conversion reaction causes large voltage hysteresis and limits the energy efficiency of the system.  相似文献   
2.
Betz JF  Cheng Y  Rubloff GW 《The Analyst》2012,137(4):826-828
Melamine can be detected in infant formula without the need for additional sample preparation or purification using a simple galvanic displacement reaction to fabricate portable silver SERS substrates. The reaction is rapid, inexpensive, and robust enough to perform well on highly heterogeneous common metal objects such as tape and coins.  相似文献   
3.
We report facile in situ biomolecule assembly at readily addressable sites in microfluidic channels after complete fabrication and packaging of the microfluidic device. Aminopolysaccharide chitosan's pH responsive and chemically reactive properties allow electric signal-guided biomolecule assembly onto conductive inorganic surfaces from the aqueous environment, preserving the activity of the biomolecules. A transparent and nonpermanently packaged device allows consistently leak-free sealing, simple in situ and ex situ examination of the assembly procedures, fluidic input/outputs for transport of aqueous solutions, and electrical ports to guide the assembly onto the patterned gold electrode sites within the channel. Both in situ fluorescence and ex situ profilometer results confirm chitosan-mediated in situ biomolecule assembly, demonstrating a simple approach to direct the assembly of biological components into a completely fabricated device. We believe that this strategy holds significant potential as a simple and generic biomolecule assembly approach for future applications in complex biomolecular or biosensing analyses as well as in sophisticated microfluidic networks as anticipated for future lab-on-a-chip devices.  相似文献   
4.
We describe a "biolithographic" technique in which the unique properties of biopolymeric materials and the selective catalytic activities of enzymes are exploited for patterning surfaces under simple and bio-friendly conditions. We begin by coating a reactive film of the polysaccharide chitosan onto an inorganic surface (glass or silicon wafer). Chitosan's pH-responsive solubility facilitates film deposition, while the nucleophilic properties of this polysaccharide allow simple chemistries or biochemistries to be used to covalently attach species to the film. The thermally responsive protein gelatin is then cast on top of the chitosan film, and the gelatin gel serves as a sacrificial "thermoresist". Pattern transfer is accomplished by applying a heated stamp to melt specific regions of the gelatin thermoresist and selectively expose the underlying chitosan. Finally, molecules are conjugated to the exposed chitosan sublayer and the sacrificial gelatin layer is removed (either by treating with warm water or protease). To demonstrate the concept, we patterned a reactive dye (NHS-fluorescein), a model 20-base oligonucleotide (using standard glutaraldehyde coupling chemistries), and a model green fluorescent protein (using tyrosinase-initiated conjugation). Because gelatin can be applied and removed under mild conditions, sequential thermo-biolithographic steps can be performed without destroying previously patterned biomacromolecules. These studies represent the first step toward exploiting nature's exquisite specificity for lithographic patterning.  相似文献   
5.
Selection rule effects associated with long-range transition dipole scattering can be significant in electron energy loss spectroscopy (ELS) for loss energies up to ~10–12 eV (or higher) on a variety of metal and semiconductor surfaces. These effects will appear in ELS studies of the electronic excitations of chemisorbed molecules; in particular, selection rule effects will suppress the intensity of certain low-lying valence transitions in several cases of current interest in chemisorption.  相似文献   
6.
While microcantilevers offer exciting opportunities for mechano-detection, they often suffer from limitations in either sensitivity or selectivity. To address these limitations, we electrodeposited a chitosan film onto a cantilever surface and mechano-transduced detection events through the chitosan network. Our first demonstration was the detection of nucleic acid hybridization. In this instance, we electrodeposited the chitosan film onto the cantilever, biofunctionalized the film with oligonucleotide probe, and detected target DNA hybridization by cantilever bending in solution (static mode) or resonant frequency shifts in air (dynamic mode). In both detection modes, we observed a two-order of magnitude increase in sensitivity compared to values reported in literature for DNA immobilized on self-assembled monolayers. In our second demonstration, we coupled electrochemical and mechanical modes to selectively detect the neurotransmitter dopamine. A chitosan-coated cantilever was biased to electrochemically oxidize dopamine solution. Dopamine's oxidation products react with the chitosan film and create a tensile stress of approximately 1.7 MPa, causing substantial cantilever bending. A control experiment was performed with ascorbic acid solution. It was shown that the electrochemical oxidation of ascorbic acid does not lead to reactions with chitosan and does not change cantilever bending. These results suggest that chitosan can confer increased sensitivity and selectivity to microcantilever sensors.  相似文献   
7.
MnO(2)/TiN nanotubes are fabricated using facile deposition techniques to maximize the surface area of the electroactive material for use in electrochemical capacitors. Atomic layer deposition is used to deposit conformal nanotubes within an anodic aluminium oxide template. After template removal, the inner and outer surfaces of the TiN nanotubes are exposed for electrochemical deposition of manganese oxide. Electron microscopy shows that the MnO(2) is deposited on both the inside and outside of TiN nanotubes, forming the MnO(2)/TiN nanotubes. Cyclic voltammetry and galvanostatic charge-discharge curves are used to characterize the electrochemical properties of the MnO(2)/TiN nanotubes. Due to the close proximity of MnO(2) with the highly conductive TiN as well as the overall high surface area, the nanotubes show very high specific capacitance (662 F g(-1) reported at 45 A g(-1)) as a supercapacitor electrode material. The highly conductive and mechanically stable TiN greatly enhances the flow of electrons to the MnO(2) material, while the high aspect ratio nanostructure of TiN creates a large surface area for short diffusion paths for cations thus improving high power. Combining the favourable structural, electrical and energy properties of MnO(2) and TiN into one system allows for a promising electrode material for supercapacitors.  相似文献   
8.
Measurements of resonance Raman scattering in InAs at 77°K near the E1 gap have been extended to 2.73 eV. The peak in the resonance curve appears at about 2.66 eV, 70 meV above the optical gap, and gives a larger temperature shift of the resonance than previously reported. Resonance lineshapes are obtained for allowed TO and LO and for forbidden LO phonon scattering. The forbidden scattering intensities are consistent with selection rules predicted for linear q-dependent and/or surface electric field induced scattering mechanisms.  相似文献   
9.
Cheng Y  Luo X  Tsao CY  Wu HC  Betz J  Payne GF  Bentley WE  Rubloff GW 《Lab on a chip》2011,11(14):2316-2318
Programmable 3D cell assembly under physiological pH conditions is achieved using electrodeposited stimuli-responsive alginate gels in a microfluidic device, with parallel sidewall electrodes enabling direct observation of the cell assembly. Electrically triggered assembly and subsequent viability of mammalian cells is demonstrated, along with spatially programmable, multi-address assembly of different strains of E. coli cells. Our approach enables in vitro study of dynamic cellular and inter-cellular processes, from cell growth and stimulus/response to inter-colony and inter-species signaling.  相似文献   
10.
High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号