首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   8篇
化学   98篇
力学   7篇
数学   18篇
物理学   17篇
  2022年   2篇
  2020年   1篇
  2019年   4篇
  2017年   2篇
  2016年   6篇
  2015年   9篇
  2014年   4篇
  2013年   10篇
  2012年   6篇
  2011年   10篇
  2010年   8篇
  2009年   7篇
  2008年   6篇
  2007年   9篇
  2006年   8篇
  2005年   9篇
  2004年   6篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1989年   3篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
排序方式: 共有140条查询结果,搜索用时 78 毫秒
1.
An automated on-line sample-preparation method using a computer-controlled pretreatment system (Auto-Pret AES system) coupled with ICP-AES was developed. In this work, an iminodiacetate chelating resin, packed in a mini-column and installed in the system was employed for the collection/concentration of 13 trace metals, including such toxic metals as Be, Cd, Cr, Cu and Pb. The limits of detection of the proposed method for trace metals were in the range of 0.001 (Be) -0.18 (Pb) ng mL-1. The enrichment factors for metal ions were about 19 times, when 5 mL of samples were used. The sample throughput was 11 h-1. The accuracy and the precision of the method were evaluated using river-water reference materials, SLRS-4 from NRCC, JSAC 0301-1 and JSAC 0302 from the Japan Society for Analytical Chemistry. The proposed method can be favorably applied to the collection/concentration of trace metals in natural water samples.  相似文献   
2.
The photochemical reaction of the trinuclear complex Fe3(CO)10NSi(CH3)3 under hydrogen leads to substitution of the bridging carbonyl group by two hydrogens. The resulting complex H2Fe3(CO)9NSi(CH3)3 acts as a catalyst in the photochemical hydrogenation of olefins and dienes.  相似文献   
3.
Metal–organic frameworks constructed from multiple (≥3) components often exhibit dramatically increased structural complexity compared to their 2 component (1 metal, 1 linker) counterparts, such as multiple chemically unique pore environments and a plurality of diverse molecular diffusion pathways. This inherent complexity can be advantageous for gas separation applications. Here, we report two isoreticular multicomponent MOFs, bMOF-200 (4 components; Cu, Zn, adeninate, pyrazolate) and bMOF-201 (3 components; Zn, adeninate, pyrazolate). We describe their structures, which contain 3 unique interconnected pore environments, and we use Kohn–Sham density functional theory (DFT) along with the climbing image nudged elastic band (CI-NEB) method to predict potential H2/CO2 separation ability of bMOF-200. We examine the H2/CO2 separation performance using both column breakthrough and membrane permeation studies. bMOF-200 membranes exhibit a H2/CO2 separation factor of 7.9. The pore space of bMOF-201 is significantly different than bMOF-200, and one molecular diffusion pathway is occluded by coordinating charge-balancing formate and acetate anions. A consequence of this structural difference is reduced permeability to both H2 and CO2 and a significantly improved H2/CO2 separation factor of 22.2 compared to bMOF-200, which makes bMOF-201 membranes competitive with some of the best performing MOF membranes in terms of H2/CO2 separations.

Tailorable multicomponent MOFs and MOF membranes for efficient H2/CO2 separation.  相似文献   
4.
N-Butyl-N,N-dimethyl-α-phenylethylammonium bromide catalyzes efficiently the three component condensation reaction of an aromatic aldehyde, a β-keto ester and urea/thiourea under solvent free conditions at 100°C to afford the corresponding dihydropyrimidinone in high yield.  相似文献   
5.
6.
The chemical analysis of egg-based wall paintings—the mezzo fresco technique—is an interesting topic in the characterisation of organic binders. A revised procedure for a dot-enzyme-linked immunosorbent assay (dot-ELISA) able to detect protein components of egg-based wall paintings is reported. In the new dot-ELISA procedure we succeeded in maximizing the staining colour by adjusting the temperature during the staining reaction. Quantification of the colour intensity by visible reflectance spectroscopy resulted in a straight line plot of protein concentration against reflectance in the wavelength range 380–780 nm. The modified dot-ELISA procedure is proposed as a semi-quantitative analytical method for characterisation of protein binders in egg-based paintings. To evaluate its performance, the method was first applied to standard samples (ovalbumin, whole egg, egg white), then to model specimens, and finally to real samples (Giotto’s wall paintings). Moreover, amino acid analysis performed by innovative ultra-performance liquid chromatography was applied both to standards and to model samples and the results were compared with those from the dot-ELISA tests. In particular, after protein hydrolysis (24 h, 114 °C, 6 mol L?1 HCl) of the samples, amino acid derivatization by use of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate enabled reproducible analysis of amino acids. This UPLC amino acid analysis was rapid and reproducible and was applied for the first time to egg-based paintings. Because the painting technique involved the use of egg-based tempera on fresh lime-based mortar, the study enabled investigation of the effect of the alkaline environment on egg-protein detection by both methods.
Figure
Model wall paintings specimens and typical dot-ELISA stains for egg proteins.  相似文献   
7.
The reaction between the cyano radical CN and cyanoacetylene molecule HC3N is of great interest in different astronomical fields, from star-forming regions to planetary atmospheres. In this work, we present a new synergistic theoretical approach for the derivation of the rate coefficient for gas phase neutral-neutral reactions. Statistic RRKM calculations on the Potential Energy Surface are coupled with a semiempirical analysis of the initial bimolecular interaction. The value of the rate coefficient for the HC3N + CN → H + NCCCCN reaction obtained with this method is compared with previous theoretical and experimental investigations, showing strengths and weaknesses of the new presented approach.  相似文献   
8.
9.
The study reports the synthesis of complexes Co(HL)Cl2 ( 1 ), Ni(HL)Cl2 ( 2 ), Cu(HL)Cl2 ( 3 ), and Zn(HL)3Cl2 ( 4 ) with the title ligand, 5‐(pyrazin‐2‐yl)‐1,2,4‐triazole‐5‐thione (HL), and their characterization by elemental analyses, ESI‐MS (m/z), FT‐IR and UV/Vis spectroscopy, as well as EPR in the case of the CuII complex. The comparative analysis of IR spectra of the metal ion complexes with HL and HL alone indicated that the metal ions in 1 , 2 , and 3 are chelated by two nitrogen atoms, N(4) of pyrazine and N(5) of triazole in the thiol tautomeric form, whereas the ZnII ion in 4 is coordinated by the non‐protonated N(2) nitrogen atom of triazole in the thione form. pH potentiometry and UV/Vis spectroscopy were used to examine CoII, NiII, and ZnII complexes in 10/90 (v/v) DMSO/water solution, whereas the CuII complex was examined in 40/60 (v/v) DMSO/water solution. Monodeprotonation of the thione triazole in solution enables the formation of the L:M = 1:1 species with CoII, NiII and ZnII, the 2:1 species with CoII and ZnII, and the 3:1 species with ZnII. A distorted tetrahedral arrangement of the CuII complex was suggested on the basis of EPR and Vis/NIR spectra.  相似文献   
10.
The “one-pot” homogeneous hydrogenation of γ-butyrolactone and succinic or fumaric acid to 1,4-butandiol, have been successfully realized in the presence of the catalytic system [Ru(acac)3]/triphos] [triphos:MeC(CH2PPh2)3]. The influence of some reaction parameters on the regioselectivity and the rate of the reaction were investigated. The study was then extended to the “one-pot” synthesis of isotopomeric 1,4-butandiols by deuteration of the appropriate substrates in a deuterated solvent. 1,4-butandiol-d8, which was fully characterized, was obtained with 96% yield and 100% isotopomeric selectivity. A mechanism was proposed to rationalize the role of catalyst, solvent and deuterium distribution.  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号