首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   2篇
化学   138篇
晶体学   9篇
力学   8篇
数学   23篇
物理学   74篇
  2021年   3篇
  2020年   4篇
  2018年   3篇
  2017年   3篇
  2016年   7篇
  2015年   2篇
  2014年   6篇
  2013年   6篇
  2012年   11篇
  2011年   13篇
  2010年   9篇
  2009年   6篇
  2008年   8篇
  2007年   21篇
  2006年   14篇
  2005年   14篇
  2004年   4篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   8篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1977年   4篇
  1976年   4篇
  1973年   3篇
  1972年   3篇
  1967年   2篇
  1960年   1篇
  1958年   2篇
  1957年   1篇
  1955年   2篇
  1947年   1篇
  1942年   2篇
排序方式: 共有252条查询结果,搜索用时 15 毫秒
1.
The sub-millisecond protonation dynamics of the chromophore in S65T mutant form of the green fluorescent protein (GFP) was tracked after a rapid pH jump following laser-induced proton release from the caged photolabile compoundo-nitrobenzaldehyde. Following a jump in pH from 8 to 5 (which is achieved within 2 μs), the fluorescence of S65T GFP decreased as a single exponential with a time constant of ∼90 μs. This decay is interpreted as the conversion of the deprotonated fluorescent GFP chromophore to a protonated non-fluorescent species. The protonation kinetics showed dependence on the bulk viscosity of the solvent, and therefore implicates bulk solvent-controlled protein dynamics in the protonation process. The protonation is proposed to be a sequential process involving two steps: (a) proton transfer from solvent to the chromophore, and (b) internal structural rearrangements to stabilize a protonated chromophore. The possible implications of these observations to protein dynamics in general is discussed  相似文献   
2.
Some bounds on the entries and on the norm of the inverse of triangular matrices with nonnegative and monotone entries are found. All the results are obtained by exploiting the properties of the fundamental matrix of the recurrence relation which generates the sequence of the entries of the inverse matrix. One of the results generalizes a theorem contained in a recent article of one of the authors about Toeplitz matrices.  相似文献   
3.
4.
Roy BC  Mallik S 《Organic letters》2001,3(12):1877-1879
[see structure]. Self-assembled monolayers (SAMs) of thiols on gold have been used for numerous applications. For protein targeting applications, one successful strategy is to use a metal-chelating SAM. It has also been demonstrated that polymerized SAMs are much more stable than non-polymerized counterparts. We report herein, the synthesis of several polymerizable, metal-chelating thiols capable of complexing luminescent lanthanide ions.  相似文献   
5.
The change in semiconductive properties of β-apo-8′-carotenal, astacene and methyl bixin on adsorption of various vapours on the crystallite surfaces has been studied at a constant sample temperature. The adsorption of vapours enhances the semiconductivity of the polyenes appreciably. This enhancement depends on the chemical nature and also on the pressure of the adsorbed vapour. The adsorption and desorption kinetics follow the modified Roginsky-Zeldovich relation. A two stage desorption process, the first stage of which gives a Lennard-Jones potential energy curve and is followed by a rate-determining transition over a potential energy barrier to the second stage of adsorption forming weakly bound complexes between the vapour molecules and the polyene crystallites, can explain satisfactorily the experimentally observed kinetic data.  相似文献   
6.
The semiconductive properties of a series of pyrenyl polyenes of the type R-(CH=CH)n-R, are studied as a function of the adsorption of different amount of a vapour. With regard to the compensation temperature (T 0) the compounds are divided into two groups. For compounds which have odd number of double bonds,T 0 is infinite and in compounds having even number double bonds,T 0 is finite.T 0 for II2 is higher while that of II4 is lower than the experimental temperature. DifferentT 0 for the compounds having odd or even number of double bonds suggests a physical basis for the compensation rule, which we believe, is related to the molecular and crystalline structure of the compounds  相似文献   
7.
The formation of micelles by dodecylphosphocholine (DPC) is modeled by treating the surfactants in atomic detail and the solvent implicitly, in the spirit of the EEF1 solvation model for proteins. The solvation parameters of the DPC atoms are carried over from those of similar atoms in proteins. A slight adjustment of the parameters for the headgroup was found necessary for obtaining an aggregation number consistent with experiment. Molecular dynamics simulations of 960 DPC molecules at different concentrations are used to obtain the aggregation number, the micelle size distribution, and the CMC. At 20 mM concentration we obtain an aggregation number of 53-56 and a CMC of 1.25 mM, values close to the experimental ones. At 100 mM the aggregation number increases to 90. Simulations of individual micelles of varying size show that the effective energy per surfactant molecule is initially a decreasing function of aggregation number but stabilizes at about 60 molecules. The van der Waals term and the desolvation of nonpolar groups contribute to micellization, whereas the desolvation of polar groups opposes it. From the difference between the effective energy and the free energy (calculated from the CMC), the translational and rotational entropy contributions to the free energy are estimated at about 7 kcal/mol per monomer. The micelles obtained here are more irregular than those obtained in explicit water simulations. This modeling approach allows the study of larger surfactant aggregates for longer times and the extraction of thermodynamic in addition to structural information.  相似文献   
8.
Oxygen-bearing motifs, mainly the congener heterocycles are ubiquitous due to their presence in various natural products and bioactive scaffolds. Although in literature, several strategies have been developed for their synthesis, hydroalkoxylation of alkynes has come forward as a method of choice and has been used extensively. In particular, hydroalkoxylation of alkynes has gained enormous attention from the synthetic community due to the rapid access to a very useful and reactive synthetic intermediate like ‘enol ether’. Furthermore, to manifold the utility of these methods, reports have been developed elaborating the generation of ‘enol ether’ using hydroalkoxylation and their usage in various reactions in cascade or tandem manner. This review focuses on recent development on the hydroalkoxylation of alkynes for the synthesis of oxygen-containing entities.  相似文献   
9.
The syntheses of lithium and alkaline earth metal complexes with the bis(borane‐diphenylphosphanyl)amido ligand ( 1 ‐ H ) of molecular formulas [{κ2‐N(PPh2(BH3))2}Li(THF)2] ( 2 ) and [{κ3‐N(PPh2(BH3))2}2M(THF)2] [(M = Ca ( 3 ), Sr ( 4 ), Ba ( 5 )] are reported. The lithium complex 2 was obtained by treatment of bis(borane‐diphenylphosphanyl)amine ( 1 ‐ H ) with lithium bis(trimethylsilyl)amide in a 1:1 molar ratio via the silylamine elimination method. The corresponding homoleptic alkaline earth metal complexes 3 – 5 were prepared by two synthetic routes – first, the treatment of metal bis(trimethylsilyl)amide and protio ligand 1 ‐ H via the elimination of silylamine, and second, through salt metathesis reaction involving respective metal diiodides and lithium salt 2 . The molecular structures of lithium complex 2 and barium complex 5 were established by single‐crystal X‐ray diffraction analysis. In the solid‐state structure of 2 , the lithium ion is ligated by amido nitrogen atoms and hydrogen atoms of the BH3 group in κ2‐coordination of the ligand 1 resulting in a distorted tetrahedral geometry around the lithium ion. However, in complex 5 , κ3‐coordination of the ligand 1 was observed, and the barium ion adopted a distorted octahedral arrangement. The metal complex 5 was tested as catalyst for the ring opening polymerization of ?‐caprolactone. High activity for the barium complex 5 towards ring opening polymerization (ROP) of ?‐caprolactone with a narrow polydispersity index was observed. Additionally, first‐principle calculations to investigate the structure and coordination properties of alkaline earth metal complexes 3 – 5 as a comparative study between the experimental and theoretical findings were described.  相似文献   
10.
A theoretical investigation on the rates of electron-transfer processes QI + QII → QI + QII and QI + QII → QI + Q2−II was carried out by using the Marcus theory of long-range electron transfer in solution. The molecular reorganizational parameter λ, the free-energy change ΔG0 for the overall reaction, and the electronic matrix element HDA for these two processes were calculated from the INDO-optimized geometries of molecules QI, QII, and histidine. QI and QII are plastoquinones (PQ) which are hydrogen-bonded to a histidine each, and the two histidines may or may not be coordinated to a Fe2+ ion. The plastoquinone representing QI is additionally flanked by two peptide fragments. Each of the species (Pep)2QI · His and His · QII has been considered to be immersed in a dielectric continuum that represents the surrounding molecules and protein folds. INDO calculations confirm the standard reduction potential for the first process (calculated 0.127 V; observed 0.13 V) and predict a midpoint potential of 0.174 V for the second process at 300 K at pH 7 (experimental value remains uncertain but is known to be close to 0.13 V). The plastoquinone fragment carries almost all the net charge (about 95.7%) in [PQ · His] and the net charge in [PQH · His]. The electron is transferred effectively from the plastoquinone part of [(Pep)2QI · His] to the plastoquinone moiety of QII · His in the first step and to the plastoquinone fragment of HisH+ · QII in the second step. Therefore, we made use of the formula for the rate of through-space electron transfer from QI to QII (and to QII). The plastoquinones are, of course, electronically coupled to histidines, and the transfer is, in reality, through the molecular bridge consisting of histidines and also Fe2+. The through-bridge effect is inherent in our calculation of ΔG0, HDA, and the reorganization parameter λ. We investigated the correlation between half-times for the transfer and (D−1opD−1s), where Dop and Ds are, respectively, optical and static dielectric constants of the condensed phase in the vicinity of the plastoquinones. We found that with reasonable values of Dop (2.6) and Ds (8.5) the experimental rates are adequately explained in terms of transfers from the plastoquinone moiety of QI to that of QII. The t1/2 values calculated for the two processes are 247 and 472 μs in the absence of Fe2+ and 134 and 181 μs in the presence of Fe2+. These are in good agreement with the observed values which are ≈ 100 and ≈ 200 μs when Fe2+ is present in the matrix and which are known to be almost twice as large when the Fe2+ is evicted from the matrix. The present work also shows that the Marcus-Hush theory of long-range electron transfers can be successfully applied to the investigation of processes occurring in a semirigid condensed phase like the thylakoid membrane region. © 1997 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号