首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   4篇
  国内免费   1篇
化学   2篇
物理学   6篇
  2021年   2篇
  2016年   2篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
铋系光催化剂是一类重要的可见光光催化剂,但块体铋系化合物的光催化性能并不理想,需进行改性增强。形貌调控和表面改性是增强铋系光催化剂性能的两种有效方法。本文对近年来铋系化合物光催化剂形貌调控和表面改性方面的研究报道进行综述总结,介绍通过超薄纳米片制备、晶面比例调控、分级结构和空心结构构筑、官能团和纳米微粒修饰表面、表面缺陷调控以及表面原位转化形成金属铋和含铋化合物纳米颗粒等方法增强铋系光催化剂性能的研究情况,对各种方法的特点及其在增加光吸收、有效分离和利用光生载流子方面的作用机制进行讨论,并对铋系光催化材料的形貌调控与表面改性的未来发展趋势及所面临的挑战进行分析总结。  相似文献   
2.
Chemistry of Natural Compounds - A new coumarin derivative, 7-O-methylparamicoumarin A (1), has been isolated from the roots of Chionanthus retusus, together with seven known compounds. The...  相似文献   
3.
By introducing a control strength matrix, the active control theory in chaotic synchronization is developed. With this extended method, chaos complete synchronization can be achieved more easily, i.e., a much smaller control signal is enough to reach synchronization in most cases. Numerical simulations on Rossler, Liu's four-scroll, and Chen system confirmed this and show that the synchronization result depends on the control strength significantly. Especially, in the case of Liu and Chen systems, the response systems' largest Lyapunov exponents' variation with the control strength is not monotone and there exist minima. It is novel for Chen system that the synchronization speed with a special small strength is higher than that of the usual active control which, as a special case of the extended method, has a much larger control strength. All these results indicate that the control strength is an important factor in the actual synchronization. So, with this extended active control, one can make a better and more practical synchronization scheme by adjusting the control strength matrix.  相似文献   
4.
研究了非谐振势中超流Fermi气体的集体激发. 基于一维超流流体动力学模型, 采用变分法获得了体系从分子Bose-Einstein凝聚端渡越到Cooper对凝聚端时系统的两个低能激发模, 即偶极模和呼吸模. 分析发现: 在整个跨越区偶极模和呼吸模都发生了频移现象, 且在BCS端频移更加显著. 进一步研究发现在不同驱动振幅激发下超流Fermi气体质量中心和宽度变化呈现出了复杂动力学特性, 由于非谐振势的贡献,超流Fermi气体两低能模发生耦合, 使宽度变化产生量子拍频现象, 且拍频频率随着驱动振幅的增加而增大. 这种非线性耦合对外部驱动的响应在幺正区尤其显著. 关键词: 超流Fermi气体 非谐振势 集体激发  相似文献   
5.
柏小东  刘锐涵  刘璐  唐荣安  薛具奎 《物理学报》2010,59(11):7581-7585
研究了一维光晶格中超流Fermi气体基态解的性质.在平均场理论框架下,利用超流Fermi体系中原子间相互作用能与晶格势能相互平衡的条件,得到了一维光晶格中超流Fermi气体在整个BEC-BCS跨越区的一组基态解,给出了基态的原子数密度空间分布、总原子数和能量.进一步对系统从BEC端转变到BCS端时的基态解性质进行了深入分析和对比.结果表明,一维光晶格中超流Fermi气体基态分布具有一些特殊的性质,由于Fermi压力,相比而言超流Fermi气体在BCS端的基态原子数密度空间分布较为扩展,平均能量明显偏高.  相似文献   
6.
Using a mean-field theory based upon Hartree-Fock approximation, we theoretically investigate the competition between the metallic conductivity, spin order and charge order phases in a two-dimensional half-filled extended Hubbard model on anisotropic triangular lattice. Bond order, double occupancy, spin and charge structure factor are calculated, and the phase diagram of the extended Hubbard model is presented. It is found that the interplay of strong interaction and geometric frustration leads to exotic phases, the charge fluctuation is enhanced and three kinds of charge orders appear with the introduction of the nearest-neighbor interaction. Moreover, for different frustrations, it is also found that the antiferromagnetic insulating phase and nonmagnetic insulating phase are rapidly suppressed, and eventually disappeared as the ratio between the nearest-neighbor interaction and on-site interaction increases. This indicates that spin order is also sensitive to the nearest-neighbor interaction. Finally, the single-site entanglement is calculated and it is found that a clear discontinuous of the single-site entanglement appears at the critical points of the phase transition.  相似文献   
7.
By one-dimensional particle-in-cell(PIC) simulations, the propagation and stability of relativistic electromagnetic(EM) solitary waves as well as modulational instability of plane EM waves are studied in uniform cold electron-ion plasmas.The investigation not only confirms the solitary wave motion characteristics and modulational instability theory, but more importantly, gives the following findings. For a simulation with the plasma density 1023 m-3 and the dimensionless vector potential amplitude 0.18, it is found that the EM solitary wave can stably propagate when the carrier wave frequency is smaller than 3.83 times of the plasma frequency. While for the carrier wave frequency larger than that, it can excite a very weak Langmuir oscillation, which is an order of magnitude smaller than the transverse electron momentum and may in turn modulate the EM solitary wave and cause the modulational instability, so that the solitary wave begins to deform after a long enough distance propagation. The stable propagation distance before an obvious observation of instability increases(decreases) with the increase of the carrier wave frequency(vector potential amplitude). The study on the plane EM wave shows that a modulational instability may occur and its wavenumber is approximately equal to the modulational wavenumber by Langmuir oscillation and is independent of the carrier wave frequency and the vector potential amplitude.This reveals the role of the Langmuir oscillation excitation in the inducement of modulational instability and also proves the modulational instability of EM solitary wave.  相似文献   
8.
We develop a five-well model for describing the tunnelling dynamics of Bose-Einstein condensates (BECs) trapped in 2D optical lattices. The tunnelling dynamics of BECs in this five-well model are investigated both analytically and numerically. We focus on the self-trapped states and the difference of the tunnelling dynamics among two- well, three-well and five-well systems. The criterions for the self-trapped states and the phase diagrams of the five trapped BECs in zero-phase mode and π-phase mode are obtained. We find that the criterions and the phase diagrams are largely modified by the dimension of the system and the phase difference 5etween wells. The five-well model is a good model and can give us an insight into the tunnelling dynamics of BECs trapped in 2D optical lattices.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号