首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
化学   13篇
力学   12篇
物理学   5篇
  2023年   1篇
  2021年   3篇
  2020年   5篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2013年   3篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2002年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
The kinetics of the RuIII-catalysed oxidation of L-leucine and L-isoleucine by alkaline permanganate were studied and compared, spectrophotometrically using a rapid kinetic accessory. The reaction is first order with respect to [oxidant] and [catalyst] with an apparently less than unit order in [substrate] and [alkali] respectively. The results suggest the formation of a complex between the amino acid and the hydroxylated species of ruthenium(III). The complex reacts further with the alkaline permanganate species in a rate-determining step, resulting in the formation of a free radical, which again reacts with the alkaline permanganate species in a subsequent fast step to yield the products. The reaction constants involved in the mechanism were calculated. There is a good agreement between observed and calculated rate constants under different experimental conditions. The activation parameters with respect to the slow step of the mechanism for both the amino acids were calculated and discussed. Of the two amino acids, leucine is oxidised at a faster rate than isoleucine.  相似文献   
2.
An efficient and easy to implement method to generate Cartesian grids is presented. The presented method generates various kinds of Cartesian grids such as uniform, octree and embedded boundary grids. It supports the variation of grid size along each spatial direction as well as anisotropic and non‐graded refinements. The efficiency and ease of implementation are the main benefits of the presented method in contrast to the alternative methods. Regarding octree grid generation, applying a simple and efficient data compression method permits to store all grid levels without considerable memory overhead. The presented method generates octree grids up to a 13‐level refinement (81923 grids on the finest level) from a complicated geometry in a few minutes on the traditional desktop computers. The FORTRAN 90 implementation of the presented method is freely available under the terms of the GNU general public license. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
3.
The nonlinear resonant behaviour of a microbeam, subject to a distributed harmonic excitation force, is investigated numerically taking into account the longitudinal as well as the transverse displacement. Hamilton’s principle is employed to derive the coupled longitudinal-transverse nonlinear partial differential equations of motion based on the modified couple stress theory. The discretized form of the equations of motion is obtained by applying the Galerkin technique. The pseudo-arclength continuation technique is then employed to solve the discretized equations of motion numerically. Different types of bifurcations as well as the stability of solution branches are determined. The numerical results are presented in the form of frequency-response and force-response curves for different sets of parameters. The effect of taking into account the longitudinal displacement is highlighted.  相似文献   
4.
The present study investigates the nonlinear resonant behavior of a microbeam over its buckled (non-trivial) configuration. The system is assumed to be subjected to an axial load along with a distributed transverse harmonic load. The axial load is increased leading the system to lose the stability via a pitchfork bifurcation; the postbuckling configuration is obtained and the nonlinear resonant response of the system over the buckled state is examined. More specifically, the nonlinear equation of motion is obtained employing Hamilton’s principle along with the modified couple stress theory. The continuous system is truncated into a system with finite degrees of freedom; the Galerkin scheme is employed to discretize the nonlinear partial differential equation of motion into a set of ordinary differential equations. This set of equations is solved numerically employing the pseudo-arclength continuation technique; first a nonlinear static analysis is performed upon this set of equations so as to obtain the onset of buckling (supercritical pitchfork bifurcation) and the buckled configuration of the microbeam. The frequency-response and force-response curves of the system are then constructed over the buckled configurations. A comparison is made between the frequency-response curves obtained by means of the modified couple stress and the classical theories. The effect of different system parameters on the frequency-response and force-response curves is also examined.  相似文献   
5.
Herein, a bilayer cylindrical conduit (P‐CA) is presented consisting of electrospun polycaprolactone (PCL) nanofibers and sodium alginate hydrogel covalently cross‐linked with N,N′‐disuccinimidyl carbonate (DSC). The bilayer P‐CA conduit is developed by combining the electrospinning and outer–inner layer methods. Using DSC, as a covalent crosslinker, increases the degradation time of the sodium alginate hydrogel up to 2 months. The swelling ratio of the hydrogel is also 503% during the first 8 h. The DSC cross‐linked sodium alginate in the inner layer of the conduit promotes the adhesion and proliferation of nerve cells, while the electrospun PCL nanofibers in the outer layer provide maximum tensile strength of the conduit during surgery. P‐CA conduit promotes the migration of Schwann cells along the axon in a rat model based on functional and histological evidences. In conclusion, P‐CA conduit will be a promising construct for repairing sciatic nerves in a rat model.  相似文献   
6.
This paper proposes a new combustion model for the simulation of biomass combustion. It is developed based on the framework of the well-known Eddy Dissipation Concept (EDC) approach, which has the ability to incorporate chemical kinetics in turbulent reacting flows and thus makes it suitable for modelling gas-phase combustion. However, its high computational cost when using detailed chemistry has made it impractical for modelling large/industrial setups. To address this handicap, the proposed approach decouples the real-time calculation of chemical and mixing processes by importing a pre-calculated steady laminar flamelet library into EDC. The development of this new model is performed based on a modified version of EDC (called Extended EDC), which is capable of modelling the gas-phase of biomass combustion over a wide range of turbulent flow conditions. The proposed model is validated by simulating the well-documented experiment of the piloted jet flames of Barlow and Frank. The performance of the model is then evaluated by simulating a small-scale grate firing biomass furnace. The results show that, overall, the proposed model can be used to model biomass combustion at substantially low computational cost.  相似文献   
7.
The nonlinear bending and vibrations of tapered beams made of axially functionally graded (AFG) material are analysed numerically. For a clamped–clamped boundary conditions, Hamilton’s principle is employed so as to balance the potential and kinetic energies, the virtual work done by the damping, and that done by external distributed load. The nonlinear strain–displacement relations are employed to address the geometric nonlinearities originating from large deflections and induced nonlinear tension. Exponential distributions along the length are assumed for the mass density, moduli of elasticity, Poisson’s ratio, and cross-sectional area of the AFG tapered beam; the non-uniform mechanical properties and geometry of the beam along the length make the system asymmetric with respect to the axial coordinate. This non-uniform continuous system is discretised via the Galerkin modal decomposition approach, taking into account a large number of symmetric and asymmetric modes. The linear results are compared and validated with the published results in the literature. The nonlinear results are computed for both static and dynamic cases. The effect of different tapered ratios as well as the gradient index is investigated; the numerical results highlight the importance of employing a high-dimensional discretised model in the analysis of AFG tapered beams.  相似文献   
8.
9.
10.
The injuries and defects in the central nervous system are the causes of disability and death of an affected person. As of now, there are no clinically available methods to enhance neural structural regeneration and functional recovery of nerve injuries. Recently, some experimental studies claimed that the injuries in brain can be repaired by progenitor or neural stem cells located in the neurogenic sites of adult mammalian brain. Various attempts have been made to construct biomimetic physiological microenvironment for neural stem cells to control their ultimate fate. Conductive materials have been considered as one the best choices for nerve regeneration due to the capacity to mimic the microenvironment of stem cells and regulate the alignment, growth, and differentiation of neural stem cells. The review highlights the use of conductive biomaterials, e.g., polypyrrole, polyaniline, poly(3,4‐ethylenedioxythiophene), multi‐walled carbon nanotubes, single‐wall carbon nanotubes, graphene, and graphite oxide, for controlling the neural stem cells activities in terms of proliferation and neuronal differentiation. The effects of conductive biomaterials in axon elongation and synapse formation for optimal repair of central nervous system injuries are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号