首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   8篇
化学   85篇
数学   3篇
物理学   41篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   9篇
  2013年   10篇
  2012年   7篇
  2011年   11篇
  2010年   6篇
  2009年   2篇
  2008年   2篇
  2007年   6篇
  2006年   9篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
  1995年   2篇
  1991年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1966年   2篇
  1942年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
1.
2.
In a recent paper Conway and Kochen, Found. Phys. 36, 2006, claim to have established that theories of the Ghirardi-Rimini-Weber (RW) type, i.e., of spontaneous wave function collapse, cannot be made relativistic. On the other hand, relativistic GRW-type theories have already been presented, in my recent paper, J. Stat. Phys. 125, 2006, and by Dowker and Henson, J. Stat. Phys. 115, 2004. Here, I elucidate why these are not excluded by the arguments of Conway and Kochen.   相似文献   
3.
4.
5.
The E. coli siderophore enterobactin, the strongest FeIII chelator known to date, forms hexacoordinate complexes with SiIV, GeIV, and TiIV. Synthetic protocols have been developed to prepare non-symmetric enterobactin analogues with varying denticities. Various benzoic acid residues were coupled to the macrocyclic lactone to afford a diverse library of ligands. These enterobactin analogues were bound to SiIV, GeIV, and TiIV, and the complexes were investigated through experimental and computational techniques. The binding behavior of the synthesized chelators enabled assessment of the contribution of each of the phenolic hydroxy groups in enterobactin to metal-ion complexation. It was found that at least four O-donors are needed for enterobactin derivatives to act as metal binders. Density functional theory calculations indicate that the strong binding behavior of enterobactin can be ascribed to a diminished translational entropy penalty, a common feature of the chelate effect, coupled with the structural arrangement of the three catechol moieties, which allows the triseryl base to be installed without distorting the preferred local metal-binding geometry of the catecholate ligands.  相似文献   
6.
7.
8.
In organic mass spectrometry, fragment ions provide important information on the analyte as a central part of its structure elucidation. With increasing molecular size and possible protonation sites, the potential energy surface (PES) of the analyte can become very complex, which results in a large number of possible fragmentation patterns. Quantum chemical (QC) calculations can help here, enabling the fast calculation of the PES and thus enhancing the mass spectrometry-based structure elucidation processes. In this work, the previously unknown fragmentation pathways of the two drug molecules Nateglinide (45 atoms) and Zopiclone (51 atoms) were investigated using a combination of generic formalisms and calculations conducted with the Quantum Chemical Mass Spectrometry (QCxMS) program. The computations of the de novo fragment spectra were conducted with the semi-empirical GFNn-xTB (n=1, 2) methods and compared against Orbitrap measured electrospray ionization (ESI) spectra in positive ion mode. It was found that the unbiased QC calculations are particularly suitable to predict non-evident fragment ion structures, sometimes contrasting the accepted generic formulation of fragment ion structures from electron migration rules, where the “true” ion fragment structures are approximated. For the first time, all fragment and intermediate structures of these large-sized molecules could be elucidated completely and routinely using this merger of methods, finding new undocumented mechanisms, that are not considered in common rules published so far. Given the importance of ESI for medicinal chemistry, pharmacokinetics, and metabolomics, this approach can significantly enhance the mass spectrometry-based structure elucidation processes and contribute to the understanding of previously unknown fragmentation pathways.  相似文献   
9.
The toxic bicyclic octapeptide α‐amanitin is mostly found in different species of the mushroom genus Amanita, with the death cap (Amanita phalloides) as one of the most prominent members. Due to its high selective inhibition of RNA polymerase II, which is directly linked to its high toxicity, particularly to hepatocytes, α‐amanitin received an increased attention as a toxin‐component of antibody‐drug conjugates (ADC) in cancer research. Furthermore, the isolation of α‐amanitin from mushrooms as the sole source severely restricts compound supply as well as further investigations, as structure–activity relationship (SAR) studies. Based on a straightforward access to the non‐proteinogenic amino acid dihydroxyisoleucine, we herein present a robust total synthesis of α‐amanitin providing options for production at larger scale as well as future structural diversifications.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号