首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
化学   8篇
物理学   1篇
  2017年   1篇
  2016年   1篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  1997年   2篇
  1985年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Straightforward analysis for components in a single certified reference sediment is of limited use for assessing the accuracy of environmental determinations. A systematic approach requires mixing of certified sediments, one with another and with environmental samples, and the preparation of secondary reference material by the laboratory. Use of Youden pairs, reference material embedded in samples and linear models should enable valid accuracy statements to be made based on well known statistical concepts. For assessing accuracy, reference sediments which are matched in particle size, and are end-members for components or sediment types are most useful.  相似文献   
2.
Cancer remains a major global malaise requiring the advent of new, efficient and low‐cost treatments. Photodynamic therapy, which combines a photosensitizer and photons to produce cytotoxic reactive oxygen species, has been established as an effective cancer treatment but has yet to become mainstream. One of the main limitations has been the paucity of photosensitizers that are effective over a wide range of wavelengths, can exert their cytotoxic effects in hypoxia, are easily synthesized and produce few if any side effects. To address these shortfalls, three new osmium‐based photosensitizers (TLD1822, TLD1824 and TLD1829) were synthesized and their photophysical and photobiological attributes determined. These photosensitizers are panchromatic (i.e. black absorbers), activatable from 200 to 900 nm and have strong resistance to photobleaching. In vitro studies show photodynamic therapy efficacy with both red and near‐infrared light in normoxic and hypoxic conditions, which translated to good in vivo efficacy of TLD1829 in a subcutaneous murine colon cancer model.  相似文献   
3.
Metal ion function depends on the regulation of properties within the primary and second coordination spheres. An approach toward studying the structure-function relationships within the secondary coordination sphere is to construct a series of synthetic complexes having constant primary spheres but structurally tunable secondary spheres. This was accomplished through the development of hybrid urea-carboxamide ligands that provide varying intramolecular hydrogen bond (H-bond) networks proximal to a metal center. Convergent syntheses prepared ligands [(N'-tert-butylureayl)-N-ethyl]-bis(N' '-R-carbamoylmethyl)amine (H(4)1R) and bis[(N'-tert-butylureayl)-N-ethyl]-(N' '-R-carbamoylmethyl)amine (H(5)2R), where R=isopropyl, cyclopentyl, and (S)-(-)-alpha-methylbenzyl. The ligands with isopropyl groups H(4)1iPr and H(5)2iPr were combined with tris[(N'-tert-butylureayl)-N-ethyl]amine (H6buea) and bis(N-isopropylcarbamoylmethyl)amine (H(3)0iPr) to prepare a series of Co(II) complexes with varying H-bond donors. [CoIIH(2)2iPr]- (two H-bond donors), [CoIIH1iPr]- (one H-bond donor), and [CoII0iPr]- (no H-bond donors) have trigonal monopyramidal primary coordination spheres as determined by X-ray diffraction methods. In addition, these complexes have nearly identical optical and EPR properties that are consistent with S=3/2 ground states. Electrochemical studies show a linear spread of 0.23 V in anodic potentials (Epa) with [CoIIH(2)2iPr]- being the most negative at -0.385 V vs [Cp2Fe]+/[Cp2Fe]. The properties of [CoIIH3buea]- (H3buea, tris[(N'-tert-butylureaylato)-N-ethyl]aminato that has three H-bond donors) appears to be similar to that of the other complexes based on spectroscopic data. [CoIIH3buea]- and [CoIIH(2)2iPr]- react with 0.5 equiv of dioxygen to afford [CoIIIH3buea(OH)]- and [CoIIIH(2)2iPr(OH)]-. Isotopic labeling studies confirm that dioxygen is the source of the oxygen atom in the hydroxo ligands: [CoIIIH3buea(16OH)]- has a -(O-H) band at 3589 cm-1 that shifts to 3579 cm-1 in [CoIIIH3buea(18OH)]-; [CoIIIH(2)2iPr(OH)]- has -(16O-H)=3661 and -(18O-H)=3650 cm-1. [CoIIH1iPr]- does not react with 0.5 equiv of O2; however, treating [CoIIH1iPr]- with excess dioxygen initially produces a species with an X-band EPR signal at g=2.0 that is assigned to a Co-O2 adduct, which is not stable and converts to a species having properties similar to those of the CoIII-OH complexes. Isolation of this hydroxo complex in pure form was complicated by its instability in solution (kint=2.5x10-7 M min-1). Moreover, the stability of the CoIII-OH complexes is correlated with the number of H-bond donors within the secondary coordination sphere; [CoIIIH3buea(OH)]- is stable in solution for days, whereas [CoIIIH(2)2iPr(OH)]- decays with a kint=5.9x10-8 M min-1. The system without any intramolecular H-bond donors [CoII0iPr]- does not react with dioxygen, even when O2 is in excess. These findings indicate a correlation between dioxygen binding/activation and the number of H-bond donors within the secondary coordination sphere of the cobalt complexes. Moreover, the properties of the secondary coordination sphere affect the stability of the CoIII-OH complexes with [CoIIIH3buea(OH)]- being the most stable. We suggest that the greater number of intramolecular H-bonds involving the hydroxo ligand reduces the nucleophilicity of the CoIII-OH unit and reinforces the cavity structure, producing a more constrained microenvironment around the cobalt ion.  相似文献   
4.
Mononuclear iron(III) complexes with terminal hydroxo ligands are proposed to be important species in several metalloproteins, but they have been difficult to isolate in synthetic systems. Using a series of amidate/ureido tripodal ligands, we have prepared and characterized monomeric Fe (III)OH complexes with similar trigonal-bipyramidal primary coordination spheres. Three anionic nitrogen donors define the trigonal plane, and the hydroxo oxygen atom is trans to an apical amine nitrogen atom. The complexes have varied secondary coordination spheres that are defined by intramolecular hydrogen bonds between the Fe (III)OH unit and the urea NH groups. Structural trends were observed between the number of hydrogen bonds and the Fe-O hydroxo bond distances: the more intramolecular hydrogen bonds there were, the longer the Fe-O bond became. Spectroscopic trends were also found, including an increase in the energy of the O-H vibrations with a decrease in the number of hydrogen bonds. However, the Fe (III/II) reduction potentials were constant throughout the series ( approximately 2.0 V vs [Cp 2Fe] (0/+1)), which is ascribed to a balancing of the primary and secondary coordination-sphere effects.  相似文献   
5.
Several rotational lines in the S and Q branches [including the previously unobserved Q(2) and Q(3) lines] of the 3-0 electric quadrupole band of H2 have been detected by cavity ring-down spectroscopy. Line strengths were measured at densities between 2.7x10(18) and 7.5x10(19) molecules cm-3 at room temperature. The observed line strengths in the S branch are consistent with earlier measurements, and systematically below theoretical calculations [relative differences of approximately 10% for the S(1),S(2), and S(3) lines, and nearly 30% for the S(0) line]. Line strength measurements for the Q branch range from 25% to 33% below theoretical calculations.  相似文献   
6.
7.
8.
9.
The isolation and characterization of monomeric Fe(III) amido complexes with hybrid ureate/amidate ligands is described. An aryl azide serves as the source of the amido ligand in preparing the complexes from trigonal monopyramidal Fe(II) precursors. Aryl azides more commonly react with transition metal complexes by a two-electron oxidation process to yield imido complexes, suggesting that the Fe(III) amido complexes may be formed from high valent species by hydrogen atom abstraction from an external species. The mechanistic basis for formation of the amido complexes is investigated using substrates that readily donate hydrogen atoms. Results from these experiments suggest that the Fe(III) amido complexes are generated from Fe(IV) imido intermediates that can facilitate homolytic X-H bond cleavage. The Fe(III) amido complexes are high spin (S = 5/2) with a strong absorbance band at lambdamax approximately 600 nm and extinction coefficients between 2000 and 3000 M-1 cm-1. These complexes are hygroscopic, reacting with 1 equiv of water to produce the corresponding Fe(III)-OH complexes and p-toluidine.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号