首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   12篇
化学   166篇
晶体学   1篇
力学   30篇
数学   10篇
物理学   18篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   11篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   11篇
  2015年   4篇
  2014年   12篇
  2013年   5篇
  2012年   10篇
  2011年   11篇
  2010年   7篇
  2009年   1篇
  2008年   10篇
  2007年   5篇
  2006年   1篇
  2005年   5篇
  2004年   4篇
  2003年   11篇
  2002年   10篇
  2001年   17篇
  2000年   9篇
  1999年   7篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   8篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有225条查询结果,搜索用时 15 毫秒
1.
Hasebe Y  Akiyama T  Yagisawa T  Uchiyama S 《Talanta》1998,47(5):1139-1147
A poly-l-histidine(PLH)-copper(II) complex can be used as an alternative biocatalyst in an O(2) detection-type amperometric enzyme-less l-ascorbate (AsA) sensor. The PLH-Cu(II) membrane was simply prepared by entrapping the PLH in polyacrylamide gel and subsequent treatment of the gel with CuCl(2) solution. This enzyme-less biosensor can be used over a relatively wide pH region from 4 to 11 and enables precise determination of AsA (RSD less than 3%, n=10) at pH 7.0. The fundamental performance characteristics (sensitivity, response time, and linear range) of this PLH-Cu(II)-based sensor is comparable to those of a native ascorbate oxidase-based sensor. Unfortunately, the selectivity is inherently rather low and, as a result, the response was degraded in the presence of higher concentrations (more than mM order) of quinones. However, reducing sugars caused no interference and the sensor could be used to detect AsA in some fruits and drinks. This enzyme-less sensor has excellent stability for at least 3 months of repeated analysis (more than 300 samples) without loss of ordinal activity.  相似文献   
2.
In this preliminary study, a new approach to ion-exclusion chromatography is proposed to overcome the relatively poor conductivity detection response which occurs in ion-exclusion chromatography when acids are added to the eluent in order to improve peak shape. This approach, termed vacancy ion-exclusion chromatography, requires the sample to be used as eluent and a sample of water to be injected onto a weakly acidic cation-exchange column (TSKgel OApak-A). Vacancy peaks for each of the analytes appear at the retention times of these analytes. Highly sensitive conductivity detection is possible and sharp, well-shaped peaks are produced, leading to efficient separations. Retention times were found to be affected by the concentration of the analytes in the eluent, and also by the presence of an organic modifier such as methanol in the eluent. Detection limits for oxalic, formic, acetic, propionic, butyric and valeric acids were 0.1, 0.2, 0.3, 0.3, 0.4 and 0.5 microM, respectively, and linear ranges for some acids extended over two orders of magnitude. Precision values for retention times were 0.21% and for peak areas were <1.90%. The vacancy ion-exclusion chromatography method was found to give detection responses four to 10 times higher than conventional ion-exclusion chromatography using sulfuric acid eluent and two to five times higher than conventional ion-exclusion chromatography using benzoic acid eluent.  相似文献   
3.
Photo-switchable ion and enzyme sensors were fabricated by the use of glassy carbon electrode coated with nonactindoped or enzyme modified poly(vinyl chloride) (PVC) membranes. The ion sensor with nonactin-doped PVC membrane, which contained spirobenzopyran as the photosensitive dye, exhibited a potentiometric photoresponse to NH4+ ion in the solution. The dynamic range of the NH4+ ion sensor was 10(-7)--10(-3) M. Urea, adenosine, and asparagine sensors were prepared by coating the surface of the NH4+-ion sensor with urease, adenosine deaminase, and asparaginase membranes, respectively. These enzyme sensors could be used for determining the substrates at the micro mole level. The performance characteristics of these sensors were compared with those previously prepared membrane electrode sensors.  相似文献   
4.
In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.  相似文献   
5.
Potentiometric stripping determination of Cd, Cu and Zn using a vibrating electrode (VE) is presented. A simple VE was constructed by using a piezoelectric bimorph oscillator and an inexpensive graphite-reinforcement carbon (GRC) rod (a mechanical pencil). Experimental results obtained with the simple VE follow the equation valid for quantitative application of potentiometric stripping analysis (PSA) in large solutions. It was found that the GRC vibrating electrode is suitable for multielement trace analysis of small samples of 0.05 mL. The relative standard deviations for divalent metals are better than 2%. Received: 3 February 1997 / Revised: 2 June 1997 / Accepted: 7 June 1997  相似文献   
6.
Double-wall carbon nanotubes (DWNTs) have been selectively synthesized over Fe/Co loaded mesoporous silica by catalytic chemical vapor deposition of alcohol. Several silica materials with desired pore diameter and morphology have been investigated for the DWNT growth. The diameter distribution and selectivity of the DWNT are found to depend on the reaction temperature, pore size, and thermal stability of the support material. A high-yield synthesis of DWNTs has been achieved at 900 degrees C over high-temperature stable mesoporous silica. The outer diameter of DWNTs is found to be in the range of 1.5-5.4 nm with a "d" spacing of 0.38 +/- 0.02 nm between inner and outer layers, which is much larger than those of multiwall carbon nanotubes.  相似文献   
7.
A simple, accurate and reproducible reversed-phase high-performance liquid chromatography (HPLC) method was developed for the separation and characterisation of alkylphenols (APs) and alkylphenol polyethoxylates (APEOs), using a C18 octadecyl silica (ODS) column. APs and each APEO oligomer were separated successfully within a reasonable time without gradient elution. An excellent resolution was obtained, even for mixtures of APs and low EO number APEOs, which are otherwise difficult to separate using conventional normal-phase HPLC methods. This method, combined with solid-phase extraction, was highly applicable for the simultaneous determination of alkylphenols and alkylphenol ethoxylates in real samples.  相似文献   
8.
Determination of aromatic carboxylic acids by conventional ion-exclusion chromatography is relatively difficult and methods generally rely on hydrophobic interaction between the solute and the resin. To overcome the difficulties in determining aromatic carboxylic acids a new approach is presented, termed vacancy ion-exclusion chromatography, which is based on use of the sample as mobile phase and an injection of aqueous 10% methanol onto a weakly acidic cation-exchange column (TSKgel OApak-A). Highly sensitive conductivity detection occurred with sharp and well-shaped peaks, leading to very efficient separations. The effects of sulfuric acid concentration added to the mobile phase, flow-rate, and column temperature on the retention volume of tested aromatic carboxylic acids was investigated. Retention times were found to be affected by the concentration of the analytes in the mobile phase and to some extent also by the addition of an organic modifier such as methanol to the injected water sample. Separation of sulfuric acid (SA), naphthalenetetracarboxylic acid (NTCA), phthalic acid (PA) and benzoic acid (BA) was satisfactory using this new approach. Detection limits were 0.66, 0.67, 0.42 and 0.86 microM and detector responses were linear in the range 1-100, 1-80, 2.5-100 and 10-40 microM, for SA, NTCA, PA and BA, respectively. Precision for retention times was 0.36% and for peak areas was 1.5%.  相似文献   
9.
Hu W  Tanaka K  Hasebe K 《The Analyst》2000,125(3):447-451
A new ion chromatographic (IC) system, which uses zwitterionic (e.g., Zwittergent 3-14) micelles as both stationary and mobile phases, highly useful for the analysis of inorganic anions in biological samples, was developed. The zwitterionic micellar stationary phase (which is obtained by immobilizing the zwitterionic surfactant on surfaces of the reversed-phase ODS) showed high ability to confine the elution bands of the large amount of SO4(2-) and Cl- to narrow zones. As a result, a base-line separation of NO2-, Br- and NO3- from SO4(2-) and Cl- is always achieved. The zwitterionic micellar mobile phase, (which is obtained by dissolving the zwitterionic surfactant with a suppressive electrolytic solution, e.g., aqueous NaHCO3 solution), on the other hand, showed high ability for rapid elution of proteins. The separation column is therefore always being cleaned up even after the protein-containing sample is directly injected. The zwitterionic micelles are also insensitive to conductivity detection, therefore either the suppressed or the non-suppressed conductivity detection method is applicable for detection of the analyte ions. Urine and serum were chosen as the model real samples and were analysed with direct sample injection; the results of successful determination of a number of inorganic anions (SO4(2-), Cl-, NO2-, Br- and NO3-) in both samples have demonstrated the usefulness of this new IC system.  相似文献   
10.
Hasebe Y  Nawa K  Ujita S  Uchiyama S 《The Analyst》1998,123(8):1775-1780
The principle of the signal amplification of a uric acid sensor based on dithiothreitol (DTT)-mediated intermediate regeneration of uricase was applied to a flow-injection system with an immobilized uricase reactor and a DTT-containing carrier. Highly sensitive detection for nM to microM order of uric acid was achieved when 10 mM TRIS-HCl buffer (pH 10.0) containing 20 mM DTT was used as a carrier at 0.6 ml min-1 and 37 degrees C. The sensitivity of the uric acid was much improved over a batch method using a uricase membrane-coupling electrode, and the detection limit (ca. peak current 8 nA) of uric acid was found to be down to 3 x 10(-10) M (amplification factor; more than 10,000). This chemically amplified flow-system is very useful for the direct assay of uric acid in highly diluted biological fluids (urine and serum) without complicated pretreatment of the samples, because this sensor has the potential to detect trace amounts (nM to microM) of uric acid in highly diluted body fluids in which the concentration of interfering constituents was decreased to negligible levels. Good correlation was observed between this system and conventional spectrophotometry. The immobilized uricase reactor could be re-used for at least 4 months of repeated analysis without loss of activity and was stable if stored at 4 degrees C in 10 mM TRIS-HCl buffer, pH 9.0.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号