首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
化学   20篇
力学   1篇
数学   5篇
物理学   5篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   2篇
  2012年   3篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1989年   1篇
  1988年   1篇
  1978年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
2.
We show that germania nanoparticle self-assembly in basic aqueous solutions occurs at a critical aggregation concentration (CAC) corresponding to a 1:1 GeO2/OH- molar ratio. A combination of pH, conductivity, and small-angle X-ray scattering (SAXS) measurements was used to monitor the effect of incremental additions of germanium (IV) ethoxide to basic solutions of sodium hydroxide or tetraalkylammonium cations. Plots of pH versus total germania concentration at varying alkalinities generated a phase diagram with three distinct regions. The diagram was analyzed with a thermodynamic model based on the chemical equilibria of germania speciation and dissociation. The model, which uses the GeO-H dissociation constant (pK = 7.1) as the single fitting parameter, quantitatively captures trends in the CAC and pH. SAXS patterns reveal that the germania nanoparticles have either a cubic or a spherical geometry of dimension approximately 1 nm that is independent of solution pH and cation. On the basis of these and other literature findings, we propose that the germania nanoparticle structure is that of the cubic octamer (double four-membered ring, Ge8O12(OH)8), which is common among condensed GeO2 materials and building units in [Ge,Si]-zeolites. Comparisons between germania and silica solutions show distinct differences in their phase behavior and nanoparticle structure. The results presented here, in combination with previous studies of siliceous solutions, provide a framework for ongoing studies of combined germania-silica phase behavior, which is part of an overarching effort to understand the influence of heteroatoms in the growth and structure direction of zeolites.  相似文献   
3.
Zeolite crystals can be used as seeds or aluminosilicate sources in syntheses to control polymorphs and/or reduce the quantity of organics used as structure-directing agents. A frequently invoked hypothesis for interzeolite transformations is that zeolites share some underlying similarity in structure, most notably in cases pertaining to organic-free syntheses. Herein, we show for the first time that ZSM-5 (MFI) can be directly obtained from USY (FAU) through an interzeolite transformation between parent–daughter structures lacking common building units in the absence of a structure-directing agent and seeds. We show that interzeolite transformation leads to a crystalline product with fewer defects. Our findings also reveal that ZSM-5 is a metastable intermediate that undergoes further transformation to mordenite (MOR) and quartz. The MFI-to-MOR transition is counter to reported trends for which transformations lead to structures with reduced molar volume. Herein, we propose mechanistic arguments that suggest the driving force for interzeolite transformation is more complex than guidelines posited in the literature.  相似文献   
4.
The time evolution of silica nanoparticles in solutions of tetrapropylammonium (TPA) has been studied using a combination of small-angle scattering, conductivity, and pH measurements to provide the first comprehensive analysis of nanoparticle structural and compositional changes at elevated temperatures. We have found that silica-TPA nanoparticles subjected to hydrothermal treatment (70-90 degrees C) grow via an Ostwald ripening mechanism with growth rates that depend on both pH and temperature. Small-angle X-ray (SAXS) and neutron (SANS) scattering confirm that the core-shell structure of the particles, initially present at room temperature, is maintained during heating, but an evolution toward sphericity is evidenced especially at high values of pH. SAXS absolute intensity calculations were utilized to calculate the changes in nanoparticle composition and concentration over time. These changes along with the conductivity and pH measurements and SANS contrast matching studies indicate that, upon heating, TPA becomes embedded in the core of nanoparticles giving rise to more zeolitic-looking nanomaterials.  相似文献   
5.
OBJECTIVE: The National Cancer Institute established the Cancer Genetics Network (CGN) to support collaborative investigations into the genetic basis of cancer susceptibility, explore mechanisms to integrate this new knowledge into medical practice, and identify ways of addressing the associated psychosocial, ethical, legal, and public health issues. SUBJECTS AND METHODS: The CGN has developed the complex infrastructure required to support the projects, including the establishment of guidelines and policies, uniform methods, standard questionnaires to be used by all of the centers, and a standard format for submission of data to the Informatics Center. Cancer patients and their family members have been invited to enroll and be included in a pool of potential study participants. The Information Technology Group is responsible for support of the design, implementation, and maintenance of the multicenter Network-wide research protocols. RESULTS: As of January 2004, the CGN contained data on 23,995 probands (participants) and 425,798 family members. As a resource for cancer genetic studies, the CGN has a large number of probands and first-degree relatives with and without cancer and with multiple ethnicities. Different study designs can be used including case-control, case-case, and family studies. CONCLUSIONS: The unique resources of the CGN are available for studies on cancer genetic susceptibility, translational research, and behavioral research. The CGN is now at a point where approved collaborators may have access to enrolled patients and their families for special studies, as well as to the clinical, environmental and family cancer history data banked in the Informatics Center.  相似文献   
6.
7.
Differentiating mechanisms of zeolite crystallization is challenging owing to the vast number of species in growth solutions. The presence of amorphous colloidal particles is ubiquitous in many zeolite syntheses, and has led to extensive efforts to understand the driving force(s) for their self‐assembly and putative roles in processes of nucleation and growth. In this study, we use a combination of in situ scanning probe microscopy, particle dissolution measurements, and colloidal stability assays to elucidate the degree to which silica nanoparticles evolve in their structure during the early stages of silicalite‐1 synthesis. We show how changes in precursor structure are mediated by the presence of organics, and demonstrate how these changes lead to significant differences in precursor–crystal interactions that alter preferred modes of crystal growth. Our findings provide guidelines for selectively controlling silicalite‐1 growth by particle attachment or monomer addition, thus allowing for the manipulation of anisotropic rates of crystallization. In doing so, we also address a longstanding question regarding what factors are at our disposal to switch from a nonclassical to classical mechanism.  相似文献   
8.
LetA be aC*-algebra with second dualA″. Let (φ n)(n=1,...) be a sequence in the dual ofA such that limφ n(a) exists for eacha εA. In general, this does not imply that limφ n(x) exists for eachx εA″. But if limφ n(p) exists whenever p is the range projection of a positive self-adjoint element of the unit ball ofA, then it is shown that limφ n(x) does exist for eachx inA″. This is a non-commutative generalisation of a celebrated theorem of Dieudonné. A new proof of Dieudonné’s theorem, for positive measures, is given here. The proof of the main result makes use of Dieudonné’s original theorem.  相似文献   
9.
The preparation of nanosized zeolites is critical for applications where mass‐transport limitations within microporous networks hinder their performance. Often the ability to generate ultrasmall zeolite crystals is dependent upon the use of expensive organics with limited commercial relevance. Herein, we report the generation of zeolite L crystals with uniform sizes less than 30 nm using a facile, organic‐free method. Time‐resolved analysis of precursor assembly and evolution during nonclassical crystallization highlights key differences among silicon sources. Our findings reveal that a homogenous dispersion of potassium ions throughout silicate precursors leads to the formation of a metastable nonporous phase, which undergoes an intercrystalline transformation to zeolite L. The generation of highly interdispersed alkali‐silicate precursors is seemingly critical to enhancing the rate of nucleation and facilitating the formation of ultrasmall crystal.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号