首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   8篇
化学   35篇
力学   6篇
数学   15篇
物理学   20篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   5篇
  2013年   2篇
  2012年   4篇
  2011年   4篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1983年   2篇
  1972年   1篇
  1969年   1篇
  1957年   1篇
  1948年   1篇
  1938年   1篇
  1936年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
1.
2.
Carbon microcoils (CMCs) have been coated with a nickel-phosphorus (Ni-P) film using an electroless plating process, with sodium hypophosphite as a reducing agent in an alkaline bath. CMC composites have potential applications as microwave absorption materials. The morphology, elemental composition and phases in the coating layer of the CMCs and Ni-coated CMCs were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The effects of process parameters such as pH, temperature and coating time of the plating bath on the phosphorus content and deposition rate of the electroless Ni-P coating were studied. The results revealed that a continuous, uniform and low-phosphorous nickel coating was deposited on the surface of the CMCs for 20 min at pH 9.0, plating bath temperature 70 °C. The as-deposited coatings with approximately 4.5 wt.% phosphorus were found to consist of a mix of nano- and microcrystalline phases. The mean particle size of Ni-P nanoparticles on the outer surface of the CMCs was around 11.9 nm. The deposition rate was found to moderately increase with increasing pH, whereas, the phosphorous content of the deposit exhibited a significant decrease. Moreover, the material of the coating underwent a phase transition between an amorphous and a crystalline structure. The thickness of the deposit and the deposition rate may be controlled through careful variation of the coating time and plating bath temperature.  相似文献   
3.
This paper numerically explores the possibility of ultrathin layering and high efficiency of graphene as a back surface field (BSF) based on a CdTe solar cell by Personal computer one-dimensional (PC1D) simulation. CdTe solar cells have been characterized and studied by varying the carrier lifetime, doping concentration, thickness, and bandgap of the graphene layer. With simulation results, the highest short-circuit current (Isc = 2.09 A), power conversion efficiency (η = 15%), and quantum efficiency (QE~85%) were achieved at a carrier lifetime of 1 × 103 μs and a doping concentration of 1 × 1017 cm−3 of graphene as a BSF layer-based CdTe solar cell. The thickness of the graphene BSF layer (1 μm) was proven the ultrathin, optimal, and obtainable for the fabrication of high-performance CdTe solar cells, confirming the suitability of graphene material as a BSF. This simulation confirmed that a CdTe solar cell with the proposed graphene as the BSF layer might be highly efficient with optimized parameters for fabrication.  相似文献   
4.
Novel photosynthetic reaction center model compounds of the type donor2–donor1–acceptor, composed of phenothiazine, BF2‐chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods. X‐ray structures of three of the phenothiazine‐BODIPY intermediate compounds have been solved to visualize the substitution effect caused by the phenothiazine on the BODIPY macrocycle. Optical absorption and emission, computational, and differential pulse voltammetry studies were systematically performed to establish the molecular integrity of the triads. The N‐substituted phenothiazine was found to be easier to oxidize by 60 mV compared to the C‐substituted analogue. The geometry and electronic structures were obtained by B3LYP/6‐31G(dp) calculations (for H, B, N, and O) and B3LYP/6‐31G(df) calculations (for S) in vacuum, followed by a single‐point calculation in benzonitrile utilizing the polarizable continuum model (PCM). The HOMO?1, HOMO, and LUMO were, respectively, on the BODIPY, phenothiazine and fullerene entities, which agreed well with the site of electron transfer determined from electrochemical studies. The energy‐level diagram deduced from these data helped in elucidating the mechanistic details of the photochemical events. Excitation of BODIPY resulted in ultrafast electron transfer to produce PTZ–BODIPY.+–C60.?; subsequent hole shift resulted in PTZ.+–BODIPY–C60.? charge‐separated species. The return of the charge‐separated species was found to be solvent dependent. In nonpolar solvents the PTZ.+–BODIPY–C60.? species populated the 3C60* prior to returning to the ground state, while in polar solvent no such process was observed due to relative positioning of the energy levels. The 1BODIPY* generated radical ion‐pair in these triads persisted for few nanoseconds due to electron transfer/hole‐shift mechanism.  相似文献   
5.
We report a Ni‐catalyzed regioselective α‐carbonylalkylarylation of vinylarenes with α‐halocarbonyl compounds and arylzinc reagents. The reaction works with primary, secondary, and tertiary α‐halocarbonyl molecules, and electronically varied arylzinc reagents. The reaction generates γ,γ‐diarylcarbonyl derivatives with α‐secondary, tertiary, and quaternary carbon centers. The products can be readily converted to aryltetralones, including a precursor to Zoloft, an antidepressant drug.  相似文献   
6.
7.
Using scanning tunneling microscopy, we show the phase transition between new structures of NO on Rh(111) in equilibrium with the gas phase near 300 K, in the Torr pressure range. Two phases with (2 x 2) and (3 x 3) periodicity transform into each other as the pressure and temperature change around the equilibrium P-T line. By measuring P and T at coexistence, we determined the heat of adsorption in the (3 x 3) structure. From the phase boundary dynamics, the activation energy barrier between phases were estimated. The results demonstrate that unique information can be obtained from high-pressure and high-temperature studies.  相似文献   
8.
Clear evidence of rogue waves in a multistable system is revealed by experiments with an erbium-doped fiber laser driven by harmonic pump modulation. The mechanism for the rogue wave formation lies in the interplay of stochastic processes with multistable deterministic dynamics. Low-frequency noise applied to a diode pump current induces rare jumps to coexisting subharmonic states with high-amplitude pulses perceived as rogue waves. The probability of these events depends on the noise filtered frequency and grows up when the noise amplitude increases. The probability distribution of spike amplitudes confirms the rogue wave character of the observed phenomenon. The results of numerical simulations are in good agreement with experiments.  相似文献   
9.
10.
Catalyst formation kinetics of a ferrocene‐containing homopolymer, polyferrocenylethylmethylsilane (PFEMS), is investigated as it relates to the catalysis of single walled carbon nanotubes (SWNTs) through a chemical vapor deposition (CVD) process. The formation and efficiency of the PFEMS‐based iron catalyst is compared with that of the corresponding polystyrene (PS)‐b‐PFEMS diblock copolymer. The PFEMS homopolymer contains 23 wt % iron, while PS‐b‐PFEMS, with a 25 vol % PFEMS content, is only 6% iron. Despite its lower iron content, spin‐cast PS‐b‐PFEMS films on SiO2/Si substrates produce more active iron sites than spin‐cast PFEMS films during CVD growth of SWNTs. This is related to the self‐assembly of the block copolymer, where PFEMS domains are well dispersed in the PS matrix, which degrades at a CVD temperature of 920 °C to leave catalytically active elemental iron behind. On the contrary, the pure PFEMS films contain a high percentage of iron and silicon, which tend to transform into ceramic‐coated iron at this high temperature, thus rendering the iron inactive towards SWNT growth. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 758–765, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号