首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   3篇
物理学   8篇
  2022年   1篇
  2016年   1篇
  2010年   1篇
  2008年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1992年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
CuAg core–shell nanoparticles are synthesized by ultra-high vacuum thermal evaporation. We show on this system how the Energy-Filtered Transmission Electron Microscopy (EFTEM) technique allows one to improve the characterization by precisely pointing out the formation of core–shell arrangements in bimetallic nanoparticle assemblies. A criterion to measure the shell thickness from EFTEM images on unique core–shell nanoparticles is defined, that can be used for core–shell nanoparticles of any sizes, with shell thicknesses over 1 nm. It is based on the intensity variation along a line drawn across a core–shell nanoparticle on a EFTEM image. This criterion has been validated by a close comparison of the shell thickness measurements performed in this work and the ones obtained by acoustic micro-Raman spectroscopy. Using this criterion, we report a strong correlation between the size of the Cu cores and the formation of the core–shell arrangements in the nanoparticle assembly studied in this work. The influence of the Cu core shape is also evidenced. The characterisation of such systems using High Resolution TEM (HRTEM) is also discussed.  相似文献   
2.
3.
Ostwald ripening has been broadly studied because it plays a determinant role in the evolution of cluster size during both chemical and physical synthesis of nanoparticles. This thermoactivated process causes large particles to grow, drawing material from the smaller particles, which shrink. However, this phenomenon becomes more complex when considering the coarsening of metallic alloy clusters. The present experimental and theoretical investigations show that the relative composition of CoPt nanoparticles can be strongly modified during high temperature annealing and displays a size-dependent behavior. This compositional change originates from the higher evaporation rate of Co atoms from the nanoparticles. More importantly, this effect is expected in all alloy clusters containing species with different mobilities.  相似文献   
4.
Facetted nickel ferrite (NiFe2O4) and bunsenite [(Ni,Fe)O] nanocrystals were grown from the decomposition of iron and nickel nitrate precursors using an inductively coupled plasma reactor. The full range of the two-phase region of the Fe2O3–NiO pseudo-equilibrium phase diagram was investigated by producing nanopowders with bulk Ni/(Ni + Fe) ratios of 0.33, 0.4, 0.5, 0.75 and 1.0. A Ni-poor [Ni/(Ni + Fe) ≤ 0.5] precursor solution produced truncated octahedron nanocrystals, whereas nanocubes were obtained at higher ratios [Ni/(Ni + Fe) ≈ 1]. In both cases, it is shown that the nanocrystals adopt a morphology close to the Wulff shape of the crystalline system (spinel and NaCl, respectively). As the bulk Ni/(Ni + Fe) ratio increases from 0.33 (the stoechiometric composition of nickel ferrite), bunsenite is epitaxially segregated on the {110} and {111} facets of nickel ferrite, while leaving the NiFe2O4 {100} facets exposed. A precursor solution at a Ni/(Ni + Fe) ratio of 0.75 gave an (Ni,Fe)O-rich nanopowder with a random and irregular interconnected morphology. The structure of these nanocrystals can be understood in terms of their thermal history in the plasma reactor. These results highlights the possibility of producing organized multi-phased nanomaterials of binary systems having two phases stable at high temperatures, using a method known to be easily scalable.  相似文献   
5.
Nanocomposite films formed by Cu nanocrystals (NCs) with sizes <10 nm embedded in an amorphous Al2O3 host have been grown by alternate pulsed-laser deposition both in vacuum and in a buffer gas (Ar) up to pressures of 0.1 Torr. The dimensions, dimension distributions, and shape of the NC produced in vacuum and in Ar up to pressures of 5᎒-3 Torr follow a similar trend as a function of the Cu areal density. This allows us to conclude that the nucleation and growth of the NC are dominated by processes occurring at the substrate surface rather than in the gas phase. For Ar pressures ̓᎒-2 Torr, the anisotropy of the NC is enhanced, the deposition rate decreases abruptly and a significant amount of the buffer gas is incorporated into the host, thus leading to the formation of a porous material.  相似文献   
6.
The 3D-hexagonal mesoporous films are used as templates to grow uniform silver nanoparticles. The grafting of hydrophobic groups at the pore surface, significantly slows down the silver ion diffusion, anchoring small silver clusters in micropores and leading to organized domains of silver particles in mesopores with a narrow size distribution.  相似文献   
7.
We demonstrate that room temperature MeV ion irradiation of a glass containing copper oxide initiates nucleation of pure Cu clusters via the inelastic "electronic" component of the ion energy loss, when the latter is above a threshold value. The clusters grow under subsequent thermal annealing, following Lifshitz-Slyozov-Wagner kinetics. The decoupling of nucleation and growth is analogous to that occurring in the photographic process. It allows total control over the cluster density, average size, and size distribution.  相似文献   
8.

We demonstrate a new pathway for the synthesis of carbon nanohorns (CNHs) in a reactor by using inductively coupled plasma (ICP) and gaseous precursors. Thermal plasma synthesis allows the formation of different carbon allotropes such as carbon nanoflakes, hybrid forms of flakes and nanotubules, CNHs embryos, seed-like CNHs and onion-like polyhedral graphitic nanocapsules. In this study, pressure has the greatest impact on the selectivity of carbon nanostructures: pressure below 53.3 kPa favors the growth of carbon nanoflakes and higher pressures, 66.7 kPa and above, promotes the formation of CNHs. The ratio between methane and hydrogen as well as the global concentration of CH4?+?H2 inside the plasma flame are also crucial to the reaction. CNHs are formed preferentially by injection of a 1:2 ratio of H2 to CH4 at 82.7 kPa with a production rate of 20 g/h. The synthesis pathway is easily scalable and could be made continuous, which offers an interesting alternative compared to methods based on laser-, arc- or induction-based vaporization of graphite rods.

Graphical Abstract
  相似文献   
9.
10.
The crystalline structure of Co clusters embedded in an amorphous Al2O3 matrix was studied by transmission electron microscopy (TEM) and electron diffraction (TED). In the first stage of the growth a metastable structure (body-centred-cubic) is observed. A face-centred-cubic phase (fcc) is found when the size of the clusters increases ( diameter > 4 nm). The hexagonal-close-packed phase arises in the fcc phase by a succession of stacking faults at the largest sizes. The mechanisms of phase transformation have been determined by using high resolution electron microscopy (HREM). The chemical nature of the clusters, in particular the existence of Co-O bonds, was investigated by using electron energy loss spectroscopy (EELS). Received 03 July 2000 and Received in final form 22 December 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号