首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学   18篇
力学   1篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1997年   1篇
  1994年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
A chiral ferroelectric smectic C* liquid crystal (FLC) with the helix pitch p 0?=?330 nm was developed to avoid any scattering of visible light when the helix is not unwound over a certain limit. Planar cells with different FLC layer thickness (16 and 44 μm) have been assembled with helix axis parallel to the glass plates and aligned along the rubbing direction. The ellipticity of the light passing through the cells vs. the electric field was investigated, and a method for evaluating the electrically controlled birefringence via ellipticity measurements has been established. We have found that the FLC cell is an optical retardation layer driven by the electric field, the effective birefringence being proportional to the square electric field. The physical origin of the electrically controlled phase shift of the light passing through the FLC layer has been analysed.  相似文献   
2.
3.
Ligand-exchange reactions of the aminodiphosphine ligand bis[(2-diphenylphosphino)ethyl]amine hydrochloride (PNHP x HCl) with labile M(NPh)Cl3(PPh3)2 precursors (M = Re, Tc) in the presence of triethylamine yield monocationic phenylimido mer,cis-[M(NPh)Cl2(PNHP)]Cl (M = Re, 1; Tc, 2) intermediate complexes. X-ray analyses show that in both compounds the aminodiphosphine acts as a tridentate ligand dictating a mer,cis arrangement. Two chloride ligands, respectively in an equatorial and in the axial position trans to the linear M-NPh moiety, fill the remaining positions in a distorted-octahedral geometry. The chloride trans to the metal-imido core is labile, and is replaced by an alcoholate group, without affecting the original geometry, as established in mer,cis-[Re(NPh)(OEt)Cl(PNHP)]Cl 4. Otherwise, ligand-exchange reactions involving the aminodiphosphine bis[(2-diphenylphosphino)ethyl]methylamine (PNMeP), in which the central secondary amine has been replaced by a tertiary amine function, or its hydrochloride salt (PNMeP x HCl) give rise to three different species, depending on the experimental conditions: fac,cis-[Re(NPh)Cl2(PNMeP)]Cl 3a, cis,fac-Re(NPh)Cl3(PNMeP) x HCl 3b, and mer,trans-[Re(NPh)Cl2(PNMeP)]Cl 3c, which are characterized in solution by multinuclear NMR studies. The monodentate groups incorporated in these intermediate compounds, either halides and/or ethoxide, undergo substitution reactions with bidentate donor ligands such as catechol, ethylene glycol, and 1,2-aminophenol to afford stable mixed ligand complexes of the type [M(NPh)(O,O-cat)(PNP)]Cl [PNP = PNHP M = Re 5, Tc 6; PNP = PNMeP M = Re 7], [Re(NPh)(O,O-gly)(PNP)]Cl [PNP = PNHP 8, PNMeP 9] and [Re(NPh)(O,N-ap)(PNMeP)]Cl 10. X-ray diffraction analyses of the representative compounds 5 and 8 reveal that the aminodiphosphine switches from the meridional to the facial coordination mode placing the heteroatom of the diphosphine trans to the phenylimido unit and the bidentate ligand in the equatorial plane. Solution-state NMR studies suggest an analogous geometry for 6, 7, 9, and 10. Comparison with similar mixed ligand complexes including the terminal nitrido group is discussed.  相似文献   
4.
Reduction-substitution reactions of [M(O)Cl(4)](-)(M=Re, (99)Tc) precursors with an excess of substituted dithiobenzoate ligands (R-PhCS(2))(-) in dichloromethane/methanol mixtures afford a series of six-coordinated neutral mixed-ligand complexes of the type M(III)(R-PhCS(3))(2)(R-PhCS(2))(M=Re; Rel--9; M=99)Tc; Tel--9). The coordination sphere is entirely filled by sulfur donor atoms, and the complexes adopt a distorted trigonal prismatic arrangement, as assessed by the X-ray crystal structure analysis of Re(4-Me-PhCS(3))(2)(4-Me-PhCS(2)), Re 2. These compounds show sharp proton and carbon NMR profiles, in agreement with the diamagnetism typical of low spin d(4) trigonal prismatic configurations. The red-ox processes involve reduction of the metal from Re(v) to Re(iii) and oxidation of dithiobenzoate to trithioperoxybenzoate. M2--9 complexes contain a substitution-inert [M(R-PhCS(3))(2)](+) moiety including the metal and two trithioperoxybenzoate fragments, while the third dithiobenzoate ligand is labile. The latter is efficiently replaced by reaction with better nucleophiles such as diethyldithiocarbamate giving a further class of mixed ligand complexes of the type M(III)(R-PhCS(3))(2)(Et(2)NCS(2))(M=Re; Re 10--18; M=(99)Tc; Tc--18), which retain the trigonal prismatic arrangement, as determined by the X-ray analyses of the representative compounds Re(PhCS(3))(2)(Et(2)NCS(2)), Re 10 and (99)Tc(PhCS(3))(2)(Et(2)NCS(2)), Tc 10.  相似文献   
5.
6.
Summary The anodic and cathodic behaviour of the complexesmer-[ReCl(CO)3(PMe2Ph)2],fac[ReCl(CO)3(PMe2Ph)2],mer-[ReCl(CO)3(PPh3)2], and [ReCl(CO)2(PMe2Ph)3] in acetonitrile solvent were studied using platinum and mercury electrodes. Cyclic voltammetry and controlled potential coulometry were the main electroanalytical techniques employed. The nature of the electrolysis products and of the electrode oxidation and reduction processes were investigated. In particular, [ReCl(CO)(MeCN)2(PMe2Ph)3][ClO4]2, [ReCl3(CO)2(PMe2Ph)2], and a not completely defined rhenium(-I) complex were electrochemically synthesized and characterized by means of i.r. and1H n.m.r. spectroscopy, and by elemental analysis.  相似文献   
7.
Five-coordinate oxotechnetium(V) mixed-ligand complexes [TcO(SES)(S-p-C6H4-OMe)], where SES is a tridentate dithiolato fragment of the type -S(CH2)2E(CH2)2S- (E = O, 1; E = S, 2; E = NMe, 3) are converted via reduction-substitution reactions in the presence of PMe2Ph into the corresponding five-coordinate Tc(III) complexes [Tc(SES)(S-p-C6H4-OMe)(PMe2Ph)] (E = O, 4; E = S, 5; E = NMe, 6). Rearrangement of the original square pyramidal "3 + 1" oxo species to the trigonal bipyramidal "3 + 1 + 1" Tc(III) complexes occurs by placing the three thiolate donors on the basal plane, the phosphine phosphorus, and the heteroatom of the tridentate ligand at the apexes of the bipyramid. These Tc(III) complexes are diamagnetic species, thereby allowing multinuclear NMR characterization in solution, which confirm their structures to be identical to those observed in the solid state via X-ray determinations.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号