首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   10篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2012年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
This work aimed at setting up a fully instrumented, laboratory-scale bioreactor enabling anaerobic valorization of solid substrates through hydrogen and/or volatile fatty acid (VFA) production using mixed microbial populations (consortia). The substrate used was made of meat-based wastes, especially from slaughterhouses, which are becoming available in large amounts as a consequence of the growing constraints for waste disposal from meat industry. A reconstituted microbial mesophilic consortium without Archaebacteria (methanogens), named PBr, was cultivated in a 5-L anaerobic bioreactor on slaughterhouse wastes. The experiments were carried out with sequential fed-batch operations, including liquid medium removal from the bioreactor and addition of fresh substrate. VFAs and nitrogen were the main metabolites observed, while hydrogen accumulation was very low and no methane production was evidenced. After 1,300 h of culture, yields obtained for VFAs reached 0.38 g/g dry matter. Strain composition of the microbial consortium was also characterized using molecular tools (temporal temperature gradient gel electrophoresis and gene sequencing).  相似文献   
2.
Esterification in an aqueous micellar medium is catalyzed by a commercially available lipase in the absence of any co-factors. The presence of only 2 wt% designer surfactant, TPGS-750-M, assists in a 100% selective enzymatic process in which only primary alcohols participate (in a 1 : 1 ratio with carboxylic acid). An unexpected finding is also disclosed where the simple additive, PhCF3 (1 equiv. vs. substrate), appears to significantly extend the scope of usable acid/alcohol combinations. Taken together, several chemo- and bio-catalyzed 1-pot, multi-step reactions can now be performed in water.

Esterification in an aqueous micellar medium is catalyzed by a commercially available lipase in the absence of any co-factors.  相似文献   
3.
Fish bones (FBs) are aquatic by-products that are sources of antioxidant-active peptides, calcium dietary supplements, and biomedical materials. Usually, fermentation of these by-products via microorganisms brings desirable changes, enhancing their value. This study investigates the value addition of FB when fermented with Monascus purpureus (MP) for different time intervals, such as 3 days (F3) and 6 days (F6). The results indicate that the soluble protein, peptide, amino acid and total phenol content, as well as the antioxidant capacity (DPPH, ABTS+ radical scavenging activity, and relative reducing power), of F3 and F6 were significantly increased after fermentation. Furthermore, the ROS contents of F3 and F6 were reduced to a greater extent than that of hydrogen peroxide (H2O2) in Clone-9 cells. The MMP integrity, as well as the SOD, CAT, and GPx activity, of F3 and F6 were also increased significantly compared to the H2O2 in Clone-9 cells. Notably, F3 and F6 displayed significant reductions in ROS content, as well as elevate, SOD activity and MMP integrity in Clone-9 cells, when compared with the native FB. These results indicate that the FBs fermented with MP for 3 days (F3), and 6 days (F6) have antioxidant capacity, with possible applications as natural food supplements.  相似文献   
4.
Mild mono- and di-hydrodehalogenative reductions of gem-dibromocyclopropanes are described, providing an easy and green approach towards the synthesis of cyclopropanes. The methodology utilizes 0.5–5 mol % TMPhen-nickel as the catalyst, which, when activated with a hydride source such as sodium borohydride, cleanly and selectively dehalogenates dibromocyclopropanes. Double reduction proceeds in a single operation at temperatures between 20–45 °C and at atmospheric pressure in an aqueous designer surfactant medium. At lower loading and either in the absence of ligand or in the presence of 2,2′-bipyridine, this new technology can also be used to gain access to not only monobrominated cyclopropanes, interesting building blocks for further use in synthesis, but also mono- or di-deuterated analogues. Taken together, this base-metal-catalyzed process provides access to cyclopropyl-containing products and is achieved under environmentally responsible conditions.  相似文献   
5.
Probiotic has modernized the current dietetic sense with novel therapeutic and nutritional benefits to the consumers. The presence of bile salt hydrolase (BSH) in probiotics renders them more tolerant to bile salts, which also helps to reduce the blood cholesterol level of the host. This review focuses on the occurrence of bile salt hydrolase among probiotics and its characterization, importance, applications, and genetics involved with recent updates. Research on bile salt hydrolase is still in its infancy. The current perspective reveals a huge market potential of probiotics with bile salt hydrolase. Intensive research in this field is desired to resolve some of the lacunae.  相似文献   
6.
The major constraint in the enzymatic saccharification of biomass for ethanol production is the cost of cellulase enzymes. Production cost of cellulases may be brought down by multifaceted approaches which includes the use of cheap lignocellulosic substrates for fermentation production of the enzyme, and the use of cost efficient fermentation strategies like solid state fermentation (SSF). The current study investigated the production of cellulase by Trichoderma reesei RUT C30 on wheat bran under SSF. Process parameters important in cellulase production were identified by a Plackett and Burman design and the parameters with significant effects on enzyme production were optimized for maximal yield using a central composite rotary design (CCD). Higher initial moisture content of the medium had a negative effect on production whereas incubation temperature influenced cellulase production positively in the tested range. Optimization of the levels of incubation temperature and initial moisture content of the medium resulted in a 6.2 fold increase in production from 0.605 to 3.8 U/gds of cellulase. The optimal combination of moisture and temperature was found to be 37.56% and 30 °C, respectively, for maximal cellulase production by the fungus on wheat bran.  相似文献   
7.
Sugar cane bagasse was used as substrate for cellulase production using Trichoderma reesei RUT C30, and the culture parameters were optimized for enhancing cellulase yield. The culture parameters, such as incubation temperature, duration of incubation, and inducer concentration, were optimized for enhancing cellulase yield using a Box-Behnken experimental design. The optimal level of each parameter for maximum cellulase production by the fungus was determined. Predicted results showed that cellulase production was highest (25.6 FPAase units per gram dry substrate) when the inducer concentration was 0.331 ml/gds, and the incubation temperature and time were 33 degrees C and 67 h, respectively. Crude inducer generated by cellulase action was found to be very effective in inducing cellulases. Validation of predicted results was done, and the experimental values correlated well with that of the predicted.  相似文献   
8.
9.
We present a green method for the synthesis of ZnO-Au hybrids using an ultrafast microwave-based technique. This method provides good control over the nucleation of the metal nanoparticles on the oxide support, which governs the morphology and microstructure of the hybrids. The hybrids exhibit good catalytic activity for CO oxidation compared to similar hybrids reported in the literature. Detailed XPS investigation reveals the presence of Au-Zn and Au-O bonds at the interface. This surface doping leads to the formation of anionic and cationic Au sites that contribute to the enhanced activity. Our method is general and can be applied for designing other supported catalysts with controlled interfaces.  相似文献   
10.
Mild mono‐ and di‐hydrodehalogenative reductions of gem‐dibromocyclopropanes are described, providing an easy and green approach towards the synthesis of cyclopropanes. The methodology utilizes 0.5–5 mol % TMPhen‐nickel as the catalyst, which, when activated with a hydride source such as sodium borohydride, cleanly and selectively dehalogenates dibromocyclopropanes. Double reduction proceeds in a single operation at temperatures between 20–45 °C and at atmospheric pressure in an aqueous designer surfactant medium. At lower loading and either in the absence of ligand or in the presence of 2,2′‐bipyridine, this new technology can also be used to gain access to not only monobrominated cyclopropanes, interesting building blocks for further use in synthesis, but also mono‐ or di‐deuterated analogues. Taken together, this base‐metal‐catalyzed process provides access to cyclopropyl‐containing products and is achieved under environmentally responsible conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号