首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   536篇
  免费   9篇
  国内免费   1篇
化学   374篇
晶体学   6篇
力学   27篇
数学   36篇
物理学   103篇
  2023年   3篇
  2022年   13篇
  2021年   23篇
  2020年   21篇
  2019年   15篇
  2018年   8篇
  2017年   21篇
  2016年   15篇
  2015年   11篇
  2014年   20篇
  2013年   49篇
  2012年   40篇
  2011年   48篇
  2010年   20篇
  2009年   24篇
  2008年   29篇
  2007年   33篇
  2006年   18篇
  2005年   18篇
  2004年   10篇
  2003年   7篇
  2002年   10篇
  2001年   2篇
  1999年   7篇
  1998年   4篇
  1997年   5篇
  1995年   2篇
  1993年   2篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   6篇
  1983年   8篇
  1982年   6篇
  1981年   3篇
  1980年   5篇
  1979年   2篇
  1978年   6篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
排序方式: 共有546条查询结果,搜索用时 15 毫秒
1.
Recently, we have developed a fast approach to calculate NMR chemical shifts using the divide and conquer method at the semiempirical level. To demonstrate the utility of this approach for characterizing protein-ligand interactions, we used the deviation of calculated chemical shift perturbations from experiment to determine the orientation of a ligand (GPI-1046) in the binding pocket of the FK506 binding protein (FKBP12). Moreover, we were able to select the native state of the ligand from a collection of decoy poses. A key hydrogen bond between O1 and HN in Ile56 was also identified. Our results suggest that ligand-induced chemical shift perturbations can be used to refine protein/ligand structures.  相似文献   
2.
Pairwise decomposition of the interaction energy between molecules is shown to be a powerful tool that can increase our understanding of macromolecular recognition processes. Herein we calculate the pairwise decomposition of the interaction energy between the protein human carbonic anhydrase II (HCAII) and the fluorine-substituted ligand N-(4-sulfamylbenzoyl)benzylamine (SBB) using semiempirical quantum mechanics based methods. We dissect the interaction between the ligand and the protein by dividing the ligand and the protein into subsystems to understand the structure-activity relationships as a result of fluorine substitution. In particular, the off-diagonal elements of the Fock matrix that is composed of the interaction between the ionic core and the valence electrons and the exchange energy between the subsystems or atoms of interest is examined in detail. Our analysis reveals that the fluorine-substituted benzylamine group of SBB does not directly affect the binding energy. Rather, we find that the strength of the interaction between Thr199 of HCAII and the sulfamylbenzoyl group of SBB affects the binding affinity between the protein and the ligand. These observations underline the importance of the sulfonamide group in binding affinity as shown by previous experiments (Maren, T. H.; Wiley: C. E. J. Med. Chem. 1968, 11, 228-232). Moreover, our calculations qualitatively agree with the structural aspects of these protein-ligand complexes as determined by X-ray crystallography.  相似文献   
3.
1‐(Aralkyl/aryl)‐3‐(alkyyaralkyl)‐5‐aroyl‐1,2,3,4‐tetrahydropyrimidines ( 2a‐c ) have been synthesized by dethiomethylation of 5‐aroyl‐6‐methylthio‐1,2,3,4‐tetrahydropyrimidines ( 1a‐c ). An alternative one‐pot synthetic strategy has been developed for the title compounds 2a‐t by the reaction of enaminones 3 with pri mary amine and formaldehyde in refluxing methanol in good yields.  相似文献   
4.
New products     
Summary An efficient and economical GC method for rapid determination of FAMEs in rapeseed-mustard is described. The seeds were transmethylated with acetylchloride, using microwave heating and separation achieved on a 3 m column packed with a mixture of 2% SP-2300 and 3% SP-2310 on Chromosorb ‘W’. The method is compared with the conventional heating method and extended efficiently for half-seed analysis. The fatty acid composition of the FAMEs mixtures prepared by both methods was similar with highly significant correlation coefficients (P<0.001).  相似文献   
5.
Ageratum conyzoides L. (Family—Asteraceae) is an annual aromatic invasive herb, mainly distributed over the tropical and subtropical regions of the world. It owns a reputed history of indigenous remedial uses, including as a wound dressing, an antimicrobial, and mouthwash as well as in treatment of dysentery, diarrhea, skin diseases, etc. In this review, the core idea is to present the antifungal potential of the selected medicinal plant and its secondary metabolites against different fungal pathogens. Additionally, toxicological studies (safety profile) conducted on the amazing plant A. conyzoides L. are discussed for the possible clinical development of this medicinal herb. Articles available from 2000 to 2020 were reviewed in detail to exhibit recent appraisals of the antifungal properties of A. conyzoides. Efforts were aimed at delivering evidences for the medicinal application of A. conyzoides by using globally recognized scientific search engines and databases so that an efficient approach for filling the lacunae in the research and development of antifungal drugs can be adopted. After analyzing the literature, it can be reported that the selected medicinal plant effectively suppressed the growth of numerous fungal species, such as Aspergillus, Alternaria, Candida, Fusarium, Phytophthora, and Pythium, owing to the presence of various secondary metabolites, particularly chromenes, terpenoids, flavonoids and coumarins. The possible mechanism of action of different secondary metabolites of the plant against fungal pathogens is also discussed briefly. However, it was found that only a few studies have been performed to demonstrate the plant’s dosage and safety profile in humans. Considered all together, A. conyzoides extract and its constituents may act as a promising biosource for the development of effective antifungal formulations for clinical use. However, in order to establish safety and efficacy, additional scientific research is required to explore chronic toxicological effects of ageratum, to determine the probability of interactions when used with different herbs, and to identify safe dosage. The particulars presented here not only bridge this gap but also furnish future research strategies for the investigators in microbiology, ethno-pharmacology, and drug discovery.  相似文献   
6.
The ingestion of contaminated water and food is known to cause food illness. Moreover, on assessing the patients suffering from foodborne disease has revealed the role of microbes in such diseases. Concerning which different methods have been developed for protecting food from microbes, the treatment of food with chemicals has been reported to exhibit an unwanted organoleptic effect while also affecting the nutritional value of food. Owing to these challenges, the demand for natural food preservatives has substantially increased. Therefore, the interest of researchers and food industries has shifted towards fruit polyphenols as potent inhibitors of foodborne bacteria. Recently, numerous fruit polyphenols have been acclaimed for their ability to avert toxin production and biofilm formation. Furthermore, various studies have recommended using fruit polyphenols solely or in combination with chemical disinfectants and food preservatives. Currently, different nanoparticles have been synthesized using fruit polyphenols to curb the growth of pathogenic microbes. Hence, this review intends to summarize the current knowledge about fruit polyphenols as antibacterial agents against foodborne pathogens. Additionally, the application of different fruit extracts in synthesizing functionalized nanoparticles has also been discussed.  相似文献   
7.
8.
Four new furostanol steroid saponins, borivilianosides A–D ( 1 – 4 , resp.), corresponding to (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐hydroxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside ( 1 ), (3β,5α,22R,25R)‐ 26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside ( 2 ), (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 3 ), and (3β,5α,25R)‐26‐(β‐D ‐glucopyranosyloxy)furost‐20(22)‐en‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 4 ), together with the known tribuluside A and (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside were isolated from the dried roots of Chlorophytum borivilianum Sant and Fern . Their structures were elucidated by 2D ‐NMR analyses (COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry.  相似文献   
9.
Nanofibril structures have been fabricated from an arylene ethynylene macrocycle (AEM), which consists of a square frame corner-joined by four carbazole moieties. The fabrication was performed through a gelating process by cooling a warm, homogeneous solution in cyclohexane at high temperature (e.g., 100 degrees C) to room temperature. During the gelation, the molecules become organized, with optimal pi-pi stacking in cooperation with the side-chain association. The favorable pi-pi stacking facilitates the 1D growth of molecular assembly.  相似文献   
10.
Horse radish peroxidase (HRP) has been electrochemically entrapped into perchlorate (ClO) doped polyaniline (PANI) film deposited onto indium‐tin‐oxide (ITO) coated glass plate. This HRP‐PANI‐ClO/ITO bioelectrode characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), UV‐Visible spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques has been utilized for estimation of hydrogen peroxide (H2O2). This H2O2 sensor exhibits response time of 5 s, linearity from 3 to 136 mM, sensitivity as 0.5638 µA mM?1 cm?2 with linear regression of 0.985. The value of the Michaelis–Menten constant (Km) has been obtained as 1.984 mM. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号