首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   4篇
化学   36篇
数学   4篇
物理学   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   7篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
  1998年   2篇
  1982年   1篇
排序方式: 共有42条查询结果,搜索用时 250 毫秒
1.
The synthesis of vinyl alcohol copolymers is limited due to the poor radical reactivity of vinyl acetate (VAc), the traditional precursor to polyvinyl alcohol (PVA). Main group monomers such as BN 2-vinylnaphthalene (BN2VN) have attracted attention as alternatives to VAc to form side chain hydroxyls via oxidation, but outstanding questions of molecular weight control remain. Herein we report systematic investigation of solvent, temperature, and initiator concentration as factors influencing BN2VN degree of polymerization. We find increased chain transfer to toluene, hypothesized to arise from differences in radical stabilization and reactivity by aromatic and BN aromatic rings. As a result of these combined efforts, high molecular weight (Mw ~ 105 g mol−1) BN2VN homopolymers and BN2VN-styrene copolymers were obtained.  相似文献   
2.
Oxidative stress plays a crucial role in DNA and RNA damage within biological cells. As a consequence, mutations of DNA can occur, leading to disorders like cancer and neurodegenerative and cardiovascular diseases. The oxidative attack of guanosine and 8-oxo-7,8-dihydroguanosine is simulated by electrochemistry coupled to capillary electrophoresis–mass spectrometry. The electrochemical conversion of the compound of interest is implemented in the injection protocol termed electrochemically assisted injection (EAI). In this way, oxidation products of guanosine can be generated electrochemically, separated by capillary electrophoresis, and detected by electrospray ionization time-of-flight mass spectrometry (EAI–CE–MS). A fully automated laboratory-made EAI cell with an integrated buffer reservoir and a compartment holding screen-printed electrodes is used for the injection. In this study, parameters like pH of the sample solution and the redox potential applied during the injection were investigated in terms of corresponding formation of well-known markers of DNA damage. The important product species, 8-oxo-7,8-dihydroguanosine, was investigated in a separate study to distinguish between primary and secondary oxidation products. A comparison of product species formed under alkaline, neutral, and acidic conditions is presented. To compare real biological systems with an analytical approach for simulation of oxidative stress, it is desirable to have a well-defined control over the redox potential and to use solutions, which are close to physiological conditions. In contrast to typical HPLC–MS protocols, the hyphenation of EAI, CE, and MS enables the generation and separation of species involved without the use of organic solvents. Thus, information of the electrochemical behavior of the nucleoside guanosine as well as the primary oxidation product 8-oxo-7,8-dihydroguanosine can be characterized under conditions close to the physiological situation. In addition, the migration behavior found in CE separations of product species can be used to identify compounds if several possible species have the same mass-to-charge values determined by MS detection.  相似文献   
3.
Alkali-metal ferrates containing amide groups have emerged as regioselective bases capable of promoting Fe−H exchanges of aromatic substrates. Advancing this area of heterobimetallic chemistry, a new series of sodium ferrates is introduced incorporating the bulky arylsilyl amido ligand N(SiMe3)(Dipp) (Dipp=2,6-iPr2-C6H3). Influenced by the large steric demands imposed by this amide, transamination of [NaFe(HMDS)3] (HMDS=N(SiMe3)2) with an excess of HN(SiMe3)(Dipp) led to the isolation of heteroleptic [Na(HMDS)2Fe{N(SiMe3)Dipp}] ( 1 ) resulting from the exchange of just one HMDS group. An alternative co-complexation approach, combining the homometallic metal amides [NaN(SiMe3)Dipp] and [Fe{N(SiMe3)Dipp}2] induces lateral metallation of one Me arm from the SiMe3 group in the iron amide furnishing tetrameric [NaFe{N(SiCH2Me2)Dipp}{N(SiMe3)Dipp}]4 ( 2 ). Reactivity studies support that this deprotonation is driven by the steric incompatibility of the single metal amides rather than the basic capability of the sodium reagent. Displaying synergistic reactivity, heteroleptic sodium ferrate 1 can selectively promote ferration of pentafluorobenzene using one of its HMDS arms to give heterotrileptic [Na{N(SiMe3)Dipp}(HMDS)Fe(C6F5)] ( 4 ). Attempts to deprotonate less activated pyridine led to the isolation of NaHMDS and heteroleptic Fe(II) amide [(py)Fe{N(SiMe3)Dipp}(HMDS)] ( 5 ), resulting from an alternative redistribution process which is favoured by the Lewis donor ability of this substrate.  相似文献   
4.
The molecular mechanisms for the photoconversion of fluorescent proteins remain elusive owing to the challenges of monitoring chromophore structural dynamics during the light-induced processes. We implemented time-resolved electronic and stimulated Raman spectroscopies to reveal two hidden species of an engineered ancestral GFP-like protein LEA, involving semi-trapped protonated and trapped deprotonated chromophores en route to photoconversion in pH 7.9 buffer. A new dual-illumination approach was examined, using 400 and 505 nm light simultaneously to achieve faster conversion and higher color contrast. Substitution of UV irradiation with visible light benefits bioimaging, while the spectral benchmark of a trapped chromophore with characteristic ring twisting and bridge-H bending motions enables rational design of functional proteins. With the improved H-bonding network and structural motions, the photoexcited chromophore could increase the photoswitching-aided photoconversion while reducing trapped species.  相似文献   
5.
We report the synthesis of a set of 2D metal–organic frameworks (MOFs) constructed with organosilicon‐based linkers. These oligosilyl MOFs feature linear SinMe2n(C6H4CO2H)2 ligands (lin‐Sin, n=2, 4) connected by Cu paddlewheels. The stacking arrangement of the 2D sheets is dictated by van der Waals interactions and is tunable by solvent exchange, leading to reversible structural transformations between many crystalline and amorphous phases.  相似文献   
6.
The mature form of green fluorescent protein (GFP) is generated by a spontaneous self-modification process that is essentially irreversible. A key step in chromophore biosynthesis involves slow air oxidation of an intermediate species, in which the backbone atoms of residues 65-67 have condensed to form a five-membered heterocycle. We have investigated the kinetics of hydrogen peroxide evolution during in vitro GFP maturation and found that the H2O2 coproduct is generated prior to the acquisition of green fluorescence at a stoichiometry of 1:1 (peroxide/chromophore). The experimental progress curves were computer-fitted to a three-step mechanism, in which the first step proceeds with a time constant of 1.5 (+/-1.1) min and includes protein folding and peptide cyclization. Kinetic data obtained by HPLC analysis support a rapid cyclization reaction that can be reversed upon acid denaturation. The second step proceeds with a time constant of 34.0 (+/-1.5) min and entails rate-limiting protein oxidation, as supported by a mass loss of 2 Da observed for tryptic peptides derived from species that accumulate during the reaction. The final step in GFP maturation proceeds with a time constant of 10.6 (+/-1.2) min, suggesting that this step may contribute to overall rate retardation. We propose that under highly aerobic conditions, the dominant reaction path follows a cyclization-oxidation-dehydration mechanism, in which dehydration of the heterocycle is facilitated by slow proton abstraction from the Tyr66 beta-carbon. In combination, the results presented here suggest a role for molecular oxygen in trapping the cyclized form of GFP.  相似文献   
7.
New mesogens presenting smectic A (SmA) phases and capable of hosting lithium salts are designed. The mesogens comprise a vinyl‐functionalized spacer to allow further reaction to the polymer backbone, an aromatic core and ethylene oxide chains, able to coordinate lithium ions. Copolymerizing these monomers with a suitable crosslinker yields the first lithium containing liquid crystalline elastomers (LCEs). The SmA structure where the ethylene oxide chains are microphase separated in layers is fixed by the crosslinking and permanent macroscopic orientation is obtained. Diffusion and conductivity measurements of the monomer sample show a large anisotropy of the ion mobility (100 for the cation and 400 for the anion). In the elastomer the anisotropy of the lithium mobility is comparable to that in the monomers.  相似文献   
8.
9.
In this issue, we offer a symposium-in-print that is focused on several new advancements in fundamental research related to the family of GFP (green fluorescent protein)-like proteins. A few applied aspects are also included to illustrate the impact this amazing set of colored proteins has made on our understanding of cell biology at the molecular level. The six articles presented here cut across several disciplines ranging from biological function to protein structure to photophysical aspects. These highly original pieces of work include both experimental and computational approaches, and will provide the reader with significant insight into current, state-of-the-art research activities in this very dynamic and fast-paced field. In the first part of this perspective, I will give a brief overview of the history and salient features of GFPs, cite some examples that illustrate their impact on biotechnology, and provide a brief review of the structural and chemical features that lend these proteins their fascinating appearance. In the second part, I will introduce each of the peer-reviewed contributions of the participating authors.  相似文献   
10.
Femtosecond IR pump UV probe spectroscopy was employed in the gas phase to study intramolecular vibrational energy redistribution (IVR) in benzene and five monosubstituted derivatives thereof. After selective excitation of the first overtone of the ring CH-stretch vibration, all molecules showed the same two-step redistribution dynamics characteristic for nonstatistical IVR. The nature of the substituent influences mainly the second, slower IVR component. The presence of an internal rotor does not alter the redistribution rate or pathway compared to that of a monatomic substituent of equal mass. Coupling order model calculations reflect the experimental trends well if the polyatomic substituents are regarded as decoupled from the intra-ring dynamics and modeled as point masses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号