首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学   18篇
物理学   1篇
  2023年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1990年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
The synthesis of a water-soluble monomer, namely 4-vinylphenyl-d-gluco(d-manno)hexitol (4) derived from d-gluconolactone, is here presented. The homopolymerization of the vinylsugar has been conducted in both aqueous and organic media using free-radical initiators. High-molar-mass water-soluble polymers are obtained. The copolymerization behavior of the vinylphenyl sugar monomer with a hydrophilic monomer such as acrylamide, as well as with a hydrophobic monomer such as styrene, has been investigated. Statistical- and block-type copolymers have thus been prepared. The structures of the polymers were confirmed by NMR and their thermal properties examined by DSC.  相似文献   
2.
Well‐defined amphiphilic PCL‐b‐(PDMA)2 and (PCL)2b‐PDMA Y‐shaped miktoarm star copolymers and PCL‐b‐PDMA linear diblock copolymer were synthesized via a combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP), where PCL is poly (ε‐caprolactone) and PDMA is poly(2‐(dimethylamino)ethyl methacrylate). All of these three types of copolymers have comparable PCL contents and overall molecular weights. The PCL block is hydrophobic while the PDMA block is hydrophilic, and they behave like polymeric surfactants and self‐assemble into PCL‐core micelles in aqueous media. The chain architectural effects on the micellization properties, including the aggregation number, size, polydispersity, and micelle densities of (PCL29)2b‐PDMA45, PCL61b‐(PDMA24)2, and PCL56b‐PDMA49 in dilute aqueous solution, were then explored by dynamic and static laser light scattering (LLS). The intensity–average hydrodynamic radius, 〈Rh〉, the aggregation number per micelle, Nagg, and the core radius, Rcore, of the PCL‐core micelles all increased in the order PCL61b‐(PDMA24)2 < (PCL29)2b‐PDMA45 < PCL56b‐PDMA49. The surface area occupied per soluble PDMA block at the core/corona interface increased in the order PCL61b‐(PDMA24)2 < PCL56b‐PDMA49 < (PCL29)2b‐PDMA45. PCL61b‐(PDMA24)2 micelles had the largest overall micelle density, possibly because of that the presence of two soluble PDMA arms at the junction point favors the bending of the core–corona interface and thus the formation of densely‐packed core‐shell nanostructures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1446–1462, 2007  相似文献   
3.
Rapid synthesis of gold nanorods of controlled dimensions is one of the desired aspects of nanotechnology as a result of the potential of these nanomaterials for biomedical applications. The synthesis of gold nanorods has been achieved using a photoinitiator as an instant source of ketyl radicals, which allows the synthesis of gold nanorods in minutes. This is the first report providing a one-step synthesis of nanorods of controlled dimensions in 20-30 min using photoinitiator I-2959 as a source of ketyl radicals. Furthermore, the role of UV intensity, the concentration of silver ions, and the presence of cosolvents and a cosurfactant have been studied in detail in an effort to produce nanorods with controlled dimensions in higher yields. The role of acetone in nanorod synthesis has been explored in detail, and it has been demonstrated that, for the photochemical synthesis of nanorods using a photoinitiator, acetone is not a critical component and can be replaced by other water-miscible solvents, thus the successful synthesis of nanorods in tetrahydrofuran (THF) has been demonstrated. It has also been found that a cosurfactant and an organic solvent are not required for the synthesis of nanorods; however, their presence is found to improve the monodispersity of nanorod samples, in addition to providing a higher yield.  相似文献   
4.
We describe here the direct synthesis of novel gluconamidoalkyl methacrylamides by reacting D ‐gluconolactone with aminoalkyl methacrylamides. The glycomonomers were then successfully polymerized via the reversible addition‐fragmentation chain transfer process (RAFT) using 4‐cyanopentanoic acid dithiobenzoate (CTP) as chain transfer agent and 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) as the initiator in aqueous media. Well‐defined polymers were obtained as revealed by gel permeation chromatography. Diblock copolymers were then synthesized by the macro‐CTA approach. The cationic glycopolymers were subsequently used in the formation of nanostructures via the complexation with plasmid DNA. As noted by dynamic light scattering, monodisperse nanoparticles were obtained via the electrostatic interaction of the cationic glycopolymer with DNA. The sizes of the nanoparticles formed were found to be stable and independent of pH. In vitro cell viability studies of the glycopolymers were carried out using HELA cell lines. The RAFT synthesized glycopolymers and cationic glyco‐copolymers revealed to be nontoxic. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 614–627, 2009  相似文献   
5.
We describe here the synthesis of 10 nm, monodisperse, iron oxide nanoparticles that we have coated with temperature-sensitive, biotinylated p(NIPAAm) (b-PNIPAAm). The PNIPAAm was prepared by the reversible addition fragmentation chain transfer polymerization (RAFT), and one end was biotinylated with a PEO maleimide-activated biotin to form a stable thioether linkage. The original synthesized iron oxide particles were stabilized with oleic acid. They were dispersed in dioxane, and the oleic acid molecules were then reversibly exchanged with a mixture of PNIPAAm and b-PNIPAAm at 60 degrees C. The b-PNIPAAm-coated magnetic nanoparticles were found to have an average diameter of approximately 15 nm by dynamic light scattering and transmission electron microscopy. The ability of the biotin terminal groups on the b-PNIPAAm-coated nanoparticles to interact with streptavidin was confirmed by fluorescence and surface plasmon resonance. It was found that the b-PNIPAAm-coated iron oxide nanoparticles can still bind with high affinity to streptavidin in solution or when the streptavidin is immobilized on a surface. We have also demonstrated that the binding of the biotin ligands on the surface of the temperature-responsive magnetic nanoparticles to streptavidin can be turned on and off as a function of temperature.  相似文献   
6.
We report here the preparation of novel biotinylated glyconanoparticles from well-defined biotinylated glycopolymers and poly(N-isopropylacrylamide) (PNIPAAm) synthesized via the reversible addition fragmentation chain transfer (RAFT) polymerization process. The in situ reduction of the biotinylated glycopolymers, PNIPAAm, poly(ethylene glycol), and HAuCl4 via a photochemical process resulted in the formation of biotinylated gold nanoparticles. The multifunctional biotinylated glyconanoparticles were then evaluated for their bioconjugation toward streptavidin using UV-vis spectroscopy and surface plasmon resonance (SPR). The biotinylated nanoparticles underwent aggregation in the presence of streptavidin as revealed by spectrophotometry, which indicates the accessibility of the biotin for conjugation. These results were further confirmed by surface plasmon resonance even in the case of surface-immobilized streptavidin.  相似文献   
7.
A new pulse sequence designed for magnetic resonance imaging of the entire thoracic cavity is described. This sequence, called 3DPAUSE, is a rapid three-dimensional Fourier transform (3DFT) sequence with periodic pauses for breathing and additional rf pulses after each pause to restore the magnetization to steady-state before data acquisition resumes. Cardiac motion artifacts are effectively removed by signal averaging. Respiratory motion artifacts are removed by breath hold. Image artifacts caused by an inadequate number of pauses or by inappropriate placement of the pauses within a scan are shown, and ways to avoid these artifacts are discussed. 3DPAUSE provides the ability to acquire three-dimensional arrays in the thoracic cavity with minimal artifacts from respiratory and cardiac motions in a clinically reasonable time.  相似文献   
8.
We report here a novel direct method for the syntheses of primary aminoalkyl methacrylamides that requires mild reagents and no protecting group chemistry. The reversible addition‐fragmentation chain transfer polymerization (RAFT) of the aminoalkyl methacrylamide revealed to be highly efficient with 4‐cyanopentanoic acid dithiobenzoate (CTP) as chain transfer agent and 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) as initiator. Cationic amino‐based homopolymers of reasonably narrow polydispersities (Mw/Mn < 1.30) and predetermined molecular weights were obtained without recourse to any protecting group chemistry. A range of block and random copolymers were also synthesized via the RAFT process. The homopolymers and copolymers were characterized by aqueous conventional and triple detection gel permeation chromatography systems. Furthermore, the primary amine‐based methacrylamide monomers and polymers revealed to be highly stable both with the primary amino group in the protonated and deprotonated form. We have also demonstrated that stabilized gold nanoparticles can be generated with the RAFT‐synthesized amine‐based polymers via a photochemical process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4984–4996, 2008  相似文献   
9.
We report here the successful functionalization of single‐walled carbon nanotubes with bioinspired sugar and phosphocholine polymeric structures via surface‐initiated atom transfer radical polymerization. The surface‐polymer‐coated carbon nanotubes have been systematically analyzed by Raman, infrared, ultraviolet–visible, and nuclear magnetic resonance spectroscopy and high‐resolution transmission electron microscopy, which give strong evidence of successful functionalization. The successful aqueous dispersion of the functionalized carbon nanotubes also indicates that functionalization has been achieved. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6558–6568, 2006  相似文献   
10.
We report the synthesis of low polydispersity, controlled-structure sugar methacrylate polymers by the ring-opening reaction of 2-aminoethyl methacrylate with D-gluconolactone, followed by the atom transfer radical polymerisation of the resulting sugar methacrylate in methanol at 20 degrees C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号