首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
化学   1篇
晶体学   1篇
物理学   18篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2007年   5篇
  2005年   2篇
排序方式: 共有20条查询结果,搜索用时 491 毫秒
1.
The temperature scaling of the ferroelectric hysteresis was investigated in hard lead zirconate titanate (PZT) bulk ceramic. The power-law temperature scaling relations were obtained for hystersis area 〈A〉, remnant polarization Pr, and coercivity EC in the forms of 〈A〉∝T-0.9650, Pr∝T-0.0261, and EC∝T-0.8823, respectively, which are mostly comparable to those of its soft counterpart. The observation that Pr decayed more slowly with temperature than in soft PZT was attributed to the presence of the complex defects in hard PZT. However, the product of Pr and EC still provided the similar scaling law on the T dependence in comparison with 〈A〉. PACS 77.80.-e; 77.80.Fm; 77.84.-s; 77.84.Dy  相似文献   
2.
The electrical properties of ceramics within the TiO2-SnO2 system which exhibit spinodal decomposition were investigated under different annealing conditions. Changes in the lattice parameter and the phase evolution of the spinodal decomposition, measured in terms of the volume fraction transformed X(t), were examined as a function of annealing time using X-ray diffraction. The room temperature dielectric properties were measured and compared to dielectric mixing rules. Doping with pentavalent Nb was found to slow the decomposition kinetics and a high permittivity (εr>1000) was induced. The origin of the high permittivity is linked to the formation of an electrically heterogeneous structure which is derived from the spinodal microstructure. Lastly, it was observed that Nb-doped TiO2-SnO2 ceramics exhibited non-linear current-voltage behavior which can be attributed to the negative temperature coefficient of resistance effect.  相似文献   
3.
4.
The SUT‐NANOTEC‐SLRI beamline was constructed in 2012 as the flagship of the SUT‐NANOTEC‐SLRI Joint Research Facility for Synchrotron Utilization, co‐established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate‐energy X‐ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X‐ray beam of tunable photon energy (1.25–10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 108 to 2 × 1010 photons s?1 (100 mA)?1 varying across photon energies. Details of the beamline and XAS instrumentation are described. To demonstrate the beamline performance, K‐edge XANES spectra of MgO, Al2O3, S8, FeS, FeSO4, Cu, Cu2O and CuO, and EXAFS spectra of Cu and CuO are presented.  相似文献   
5.
The combination of energy dispersive X‐ray fluorescence (ED‐XRF) and synchrotron X‐ray absorption near‐edge structure (XANES) provides the detailed composition of fine‐paste ware (FPW) kendis, dated back to 13th–14th century maritime Southeast Asia. Sources of clay and production sites were classified according to Al2O3, SiO2, α‐Fe2O3 and γ‐Fe2O3 as well as trace elements. The similarities based on these components provided another evidence of a trade route between Kota Cina in North Sumatra of Indonesia and Kok Moh on Satingphra Peninsula, a well‐known production area in present‐day Thailand. In additions, the uniquely large contribution of α‐Fe2O3 in XANES spectra suggests that Nakhon Si Thammarat province of Thailand could also be one of FPW production areas in maritime Southeast Asia. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
6.
In this study, ceramics in Mn-doped ((Ka0.5Na0.5)0.935Li0.065)NbO3 ceramics (Mn content = 0.25, 0.50, 1.00 and 1.50 mol%) were successfully prepared by the conventional mixed-oxide technique. The crystal structure was identified by XRD as a single-phase perovskite structure with tetragonal symmetry. The valence of Mn ions, characterized by the synchrotron XAS technique, was seen to change from Mn4+ to Mn3+ during the formation of the crystal. The valence state of Mn strongly affected the crystal structure and ferroelectric properties of the ceramics. The ferroelectric parameters show the decrease of remnant polarization and the increase of the coercive field with increasing MnO2 content. The results confirm the Mn3+ in KNNL perovskite lattices, leading to the formation of oxygen vacancies and hardening effects.  相似文献   
7.
Sub-coercive field dynamic ferroelectric hysteresis of a morphotropic phase boundary composition of the PZT-PZN ceramic was investigated under influence of the compressive stress. The scaling relation of hysteresis area 〈A〉 against frequency f, field amplitude E0, and stress σ took a form of , which is not different significantly to that of other PZT-PZN compositions with pure tetragonal or rhombohedral structure, as well as to that of soft and hard PZT bulk ceramics. This study suggested that the domain structures, not ceramic compositions, played a key role in controlling dynamic hysteresis behavior of ferroelectric materials.  相似文献   
8.
Lead titanate ceramics have been prepared by two different processing methods: conventional (or single-stage) and two-stage sintering. Effects of designed sintering conditions on phase formation, densification, microstructure and dielectric properties of the ceramics were characterized via X-ray diffraction, Archimedes density measurement, scanning electron microscopy and dielectric measurement, respectively. The potentiality of a two-stage sintering technique as a simple ceramic fabrication method to obtain highly dense and pure lead titanate ceramics was demonstrated. It has been found that, under suitable two-stage sintering conditions, dense perovskite lead titanate ceramics can be successfully achieved with better dielectric properties than those of ceramics from a single-stage sintering technique. PACS 77.22.-d; 77.84.-s; 77.84.Dy  相似文献   
9.
In this study, lead indium niobate (Pb(In1/2Nb1/2)O3 or PIN) ceramics were prepared by a wolframite precursor method via a vibro-milling technique. Fine-grain ceramics were achieved with average grain size of 1–2 μm, indicating advantage of the vibro-milling technique used. The dielectric and ferroelectric properties were measured by means of an automated dielectric measurement set-up and a standardized ferroelectric tester, respectively. The dielectric properties of PIN ceramic were measured as functions of both temperature and frequency. The results indicated that the dielectric properties of the PIN ceramic were of relaxor ferroelectric behavior with temperature of dielectric maximum (Tm)∼53 °C and dielectric constant (εr)∼4300 (at 1 kHz). The P–E hysteresis loop measurements at various temperatures showed that the ferroelectric properties of the PIN ceramic changed from the paraelectric behavior at temperature above Tm to slim-loop type relaxor behavior at temperature slightly below Tm. Moreover, the P–E loop became more open at temperatures much lower than Tm. PACS 77.22.Ch; 77.84.Dy  相似文献   
10.
In this work, barium titanate (BT) and cement composites of 0-3 connectivity were produced with BT concentrations of 30%, 50% and 70% by volume using the mixing and pressing method. The dielectric constant (ε r ) and the dielectric loss (tan δ) at room temperature and at various frequencies (0.1–20 kHz) of the ferroelectric BT-Portland cement composites with different BT concentrations were investigated. The results show that the dielectric constant of BT-PC composites was found to increase as BT concentration increases, and that the highest value for ε r —of 436—was obtained for a BT concentration of 70%. In addition, the dielectric loss tangent decreased with increasing BT concentration. Moreover, several mathematical models were used; the experimental values of the dielectric constants are closest to those calculated from the cube model. The 0-3 cement-based piezoelectric composites show typical ferroelectric hysteresis loops at room temperature. The instantaneous remnant polarization (P ir ), at an applied external electrical field (E 0) of 20 kV/cm (90 Hz) of 70% barium titanate composite, was found to have a value ≈3.42 μC/cm2. Furthermore, the piezoelectric coefficient (d 33) was also found to increase as BT concentration increases, as expected. The highest value for d 33 was 16 pC/N for 70% BT composite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号