首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   3篇
物理学   2篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
The therapeutic and immunological properties of biopharmaceuticals are governed by the glycoforms contained in them. Thus, bioinformatics tools capable of performing comprehensive characterization of glycans are significantly important to the biopharma industry. The primary structural elucidation of glycans using mass spectrometry is tricky and tedious in terms of spectral interpretation. In this study, the biosimilars of a therapeutic monoclonal antibody and an Fc-fusion protein with moderate and heavy glycosylation, respectively, were employed as representative biopharmaceuticals for released glycan analysis using liquid chromatography–tandem mass spectrometry instead of conventional mass spectrometry-based analysis. SimGlycan® is a software with proven ability to process tandem MS data for released glycans could identify eight additional glycoforms in Fc-fusion protein biosimilar, which were not detected during mass spectrometry analysis of released glycans or glyco-peptide mapping of the same molecule. Thus, liquid chromatography–tandem mass spectrometry analysis of released glycans not only complements conventional liquid chromatography–mass spectrometry-based glycan profiling but can also identify additional glycan structures that may otherwise be omitted during conventional liquid chromatography–tandem mass spectrometry based analysis of mAbs. The mass spectrometry data processing tools, such as PMI Byos™, SimGlycan®, etc., can display pivotal analytical capabilities in automated liquid chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry-based glycan analysis workflows, especially for high-throughput structural characterization of glycoforms in biopharmaceuticals.  相似文献   
2.
Journal of Thermal Analysis and Calorimetry - In this paper, nanofluid forced convective heat transfer through an open-cell metal foam heatsink under a uniform heat flux, numerically has been...  相似文献   
3.
We analyse the performance of the explicit algebraic subgrid-scale (SGS) stress model (EASSM) in large eddy simulation (LES) of plane channel flow and the flow in a channel with streamwise periodic hill-shaped constrictions (periodic hill flow) which induce separation. The LESs are performed with the Code_Saturne which is an unstructured collocated finite volume solver with a second-order spatial discretisation suitable for LES of incompressible flow in complex geometries. At first, performance of the EASSM in LES of plane channel flow at two different resolutions using the Code_Saturne and a pseudo-spectral method is analysed. It is observed that the EASSM predictions of the mean velocity and Reynolds stresses are more accurate than the conventional dynamic Smagorinsky model (DSM). The results with the pseudo-spectral method were, in general, more accurate. In the second step, LES with the EASSM of flow separation in the periodic hill flow is compared to LES with the DSM, no SGS model and a highly resolved LES data using the DSM. Results show that the mean velocity profiles, the friction and pressure coefficients, the length and shape of the recirculation bubble, as well as the Reynolds stresses are considerably better predicted by the EASSM than the DSM and the no SGS model simulations. It was also observed that in some parts of the domain, the resolved strain-rate and SGS shear stress have the same sign. The DSM cannot produce a correct SGS stress in this case, in contrast to the EASSM.  相似文献   
4.
Journal of Thermal Analysis and Calorimetry - In the present paper, a numerical study on flow and heat transfer of air/nanofluid impinging jet flow through a cylindrical porous heat sink has been...  相似文献   
5.
We investigate the heat-release effects on the characteristics of the subgrid-scale (SGS) stress tensor and SGS dissipation of kinetic energy and enstrophy. Direct numerical simulation data of a non-premixed reacting turbulent wall-jet flow with and without substantial heat release is employed for the analysis. This study comprises, among others, an analysis of the eigenvalues of the resolved strain rate and SGS stress tensors, to identify the heat-release effects on their topology. An assessment of the alignment between the eigenvectors corresponding to the largest eigenvalues of these two tensors is also given to provide further information for modelling of the SGS stress tensor. To find out the heat-release effects on the dynamics of the turbulent kinetic energy and enstrophy dissipation, probability density functions (PDFs) and mean values are analysed. The mean SGS shear stress and turbulent kinetic energy both slightly increase in the buffer layer and substantially decrease further away from the wall, due to the heat-release effects. Contrary to the kinetic energy, heat release decreases the mean SGS dissipation of enstrophy in the near-wall region. Moreover, differences in the shapes of the PDFs between the isothermal and exothermic cases indicate changes in the intermittency level of both SGS dissipations. Heat release also increases the SGS stress anisotropy in the near-wall region. Although, the structure of the mean resolved strain-rate tensor only marginally differs between the isothermal and exothermic cases in the near-wall region, substantial differences are observed in the jet area, where compressibility effects are important and heat-release effects are found to promote compression states. The differences in the relative alignment between the SGS stress and resolved strain-rate tensors in the isothermal and exothermic cases are discussed in connection with the differences in the SGS dissipation of kinetic energy.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号