首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   11篇
数学   1篇
  2007年   2篇
  2006年   3篇
  2004年   3篇
  2002年   1篇
  2000年   1篇
  1998年   2篇
排序方式: 共有12条查询结果,搜索用时 46 毫秒
1.
Synthetic routes to 2-(pyridin-2-yl)-N,N-diphenylacetamide and 2-(6-methylpyridin-2-yl)-N,N-diphenyl-acetamide are described along with results from the chemical oxidation of these compounds with peracetic acid, m-chloroperbenzoic acid, and OXONE. In each case, oxidations generate four products in varying amounts depending on the oxidant and reaction conditions. Each product has been characterized by spectroscopic methods and the molecular structures of several of the new compounds have been confirmed by X-ray crystallography.  相似文献   
2.
This report describes affinity measurements for two, water-soluble, methyl-alkylated diamides incorporating the malonamide functionality, N,N,N',N' tetramethylmalonamide (TMMA) and a bicyclic diamide (1a), toward actinide metal cations (An) in acidic nitrate solutions. Ligand complexation to actinides possessing oxidation states ranging from +3 to +6 was monitored through optical absorbance spectroscopy, and formation constants were obtained from the refinement of the spectrophotometric titration data sets. Species analysis gives evidence for the formation of 1, 4, 1, and 2 spectrophotometrically observable complexes by TMMA to An(III, IV, V, and VI), respectively, while for 1a, the respective numbers are 3, 4, 2, and 2. Consistent with the preorganization of 1a toward actinide binding, a significant difference is found in the magnitudes of their respective formation constants at each complexation step. It has been found that the binding affinity for TMMA follows the well-established order An(V) < An(III) < An(VI) < An(IV). However, with 1a, Np(V) forms stronger complexes than Am(III). The complexation of 1a with Np(V) and Pu(VI) at an acidity of 1.0 M is followed by reduction to Np(IV) and Pu(IV), whereas TMMA does not perturb the initial oxidation state for these dioxocations. These measurements of diamide binding affinity mark the first time single-component optical absorbance spectra have been reported for a span of actinide-diamide complexes covering all common oxidation states in aqueous solution.  相似文献   
3.
It is well known that, for stepsize sufficiently small, compactattractors of ordinary differential equations persist underdiscretization. The present paper describes the structure ofthe discrete-time dynamical system obtained via discretizationon A(Mh)\Mh where Mh is the approximate attractor and A(Mh)is its domain of attraction. The existence of a smooth embeddinginto a continuous-time parallelizable flow is proved. The constructioncan be used to define sections for discretizations and can beinterpreted as a justification of the method of modified equations.  相似文献   
4.
An exhaustive survey of crystal structure data on simple amides and metal complexes containing monodentate amide ligands has been performed. Statistical analysis of structural features are reported as a function of the degree of alkylation of the amide functional group, the type of metal ion in the amide complex, and the type of binding to the metal ion. Average values are reported for bond lengths, bond angles, and torsional angles. Orientational preferences of the coordinated amide ligand are discussed in terms of M–O–C bond angles and M–O–C–N torsion angles.  相似文献   
5.
The compound 2,6-bis(N-tert-butylacetamide)pyridine (2) was obtained via a Ritter synthesis, and oxidation with oxone provided the title pyridine-N-oxide (3). The compounds were characterized by spectroscopic methods, and the molecular structure of the N-oxide was determined by single-crystal X-ray diffraction methods. The coordination chemistry with Eu(NO3)3 was examined by using 1:1 and 2:1 ligand/Eu ratios, and a single-crystal X-ray analysis for Eu(3)(NO3)3(H2O) was completed. The ligand 3 is found to chelate in a tridentate fashion on the Eu(III).  相似文献   
6.
This report describes an investigation into the coordination chemistry of trivalent lanthanides in solution and the solid state with acyclic and preorganized bicyclic malonamide ligands. Two experimental investigations were performed: solution binding affinities were determined through single-phase spectrophotometric titrations and the extent of conformational change upon binding was investigated with single-crystal X-ray crystallography. Both experimental methods compare the bicyclic malonamide (BMA), which is designed to be preorganized for binding trivalent lanthanides, to an analogous acyclic malonamide. Results from the spectrophotometric titrations indicate that BMA exhibits a 10-100x increase in binding affinity to Ln(III) over acyclic malonamide. In addition, BMA forms compounds with high ligand-metal ratios, even when competing with water and nitrate ligands for binding sites. The crystal structures exhibit no significant differences in the nature of the binding between Ln(III) and the BMA or acyclic malonamide. These results support the conclusion that rational ligand design can lead to compounds that enhance the binding affinities within a ligand class.  相似文献   
7.
A new set of pyridine and pyridine N‐oxides functionalized with N,N‐dimethylpropionamide pendant groups in the 2‐ and 2,6‐positions have been prepared from the combination of 2‐chloromethylpyridine and 2,6‐bis(chloromethyl) pyridine with α‐lithio N,N‐dimethyl acetamide. The coordination interaction between 2‐(N,N‐dimethylpropionamide) pyridine N‐oxide ( 10 ) and Tb(NO3)3 has been unambiguously defined via single crystal X‐ray diffraction analysis of Tb( 10 )(NO3)3(H2O).  相似文献   
8.
Syntheses for 2-(pyridyl N-oxide) methylphosphonic acid, 1-H, and 2-(pyridyl N-oxide) hydroxymethylphosphonic acid, 4-H, are described, and the crystal structures of both ligands are presented. Combination of these ligands with freshly prepared erbium hydroxide results in the formation of the isostructural complexes Er(L(-))(3)(LH).8H(2)O. The crystal structure determinations of the complexes show that extensive hydrogen bonding links the individual eight coordinate Er(L(-))(3)(LH) molecular units into a 3-D structure.  相似文献   
9.
The uniquely well-resolved (99)Tc NMR spectrum of the pertechnetate ion in liquid water poses a stringent test of the accuracy of ab initio calculations. The displacement of the (99)Tc chemical shift as a function of temperature has been measured over the range 10-45 degrees C for the three isotopomers Tc((16)O)(4)(-), Tc((16)O)(3)((18)O)(-), and Tc((16)O)(3)((17)O)(-) at natural oxygen isotope abundance levels, and in addition the temperature dependence of the Tc-O scalar coupling was determined for the Tc((16)O)(3)((17)O)(-) isotopomer. Values for these parameters were computed using relativistic spin-orbit density functional theory with an unsolvated ion approximation and with treatments of the solvated ion based on the COnductor-like Screening MOdel (COSMO) approach. The temperature and isotope dependence of (99)Tc NMR parameters inferred by these methods were in good quantitative agreement with experimental observations. The change in the Tc-O bond length associated with the changes in temperatures considered here was determined to be of the order of 10(-)(4) A. Vibrational energies and Tc-O bond lengths derived from these models also compare favorably with previous experimental studies.  相似文献   
10.
Evaluation of the malonamide substructure with respect to binding site preorganization and complementarity for lanthanide metal ions suggests a new ligand architecture specifically designed to enhance lanthanide ion affinity. Consideration of conformational reorganization, restricted bond rotation, and donor group orientation suggests that typical malonamide structures, for example, N,N,N'N'-tetrahexylpropane-1,3-diamide (1), N,N'-dibutyl-N,N'-dimethyl-2-tetradecylpropane-1,3-diamide (2), or N,N,N'N'-tetramethylpropane-1,3-diamide (6), are poorly organized for metal ion complexation. Molecular mechanics analyses show that the unfavorable enthalpic and entropic terms are eliminated by the use of the novel bicyclic architecture found in 3,9-diaza-3,9-dimethylbicyclo[4.4.0]decane-2,10-dione (7). Diamide 7 was prepared, and the X-ray crystal structure of the complex [Eu(7)(2)(NO(3))(3)] exhibits the same chelate conformation predicted by the molecular mechanics model. A hydrophobic derivative, 3,9-diaza-3,9-dioctylbicyclo[4.4.0]decane-2,10-dione (8), was prepared, and solvent extraction studies reveal that the preorganized architecture of 8 gives a dramatic enhancement in binding affinity, exhibiting Eu(3+) distribution coefficients that are 7 orders of magnitude larger than a typical malonamide ligand, 1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号