首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
化学   11篇
晶体学   1篇
数学   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2010年   1篇
  2005年   2篇
  2004年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Protonation constants of methyl/nitro substituted 1,10-phenanthrolines {(m/n-sphen): 4-methyl-phenanthroline (4-mphen), 5-methyl-1,10-phenanthroline (5-mphen), 4,7-dimethyl-1,10-phenanthroline (dmphen), 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen) and 5-nitro-1,10-phenanthroline (5-nphen)] and the amino acids (aa) l-tyrosine (tyr) and glycine (gly), and their corresponding binary and ternary stability constants with Cu(II), were determined in aqueous 0.1 mol·L?1 KCl ionic media at 298.15 K. The protonation constants of the ligands and the stability constants of the binary and ternary complexes of Cu(II) with the ligands were calculated from the potentiometric data using the “BEST” software package. The species distribution diagrams were obtained using the “SPE” software package under the experimental conditions described. The order of stability of the ternary complexes in terms of the primary ligands is [Cu(tmphen)(aa)]+ > [Cu(dmphen)(aa)]+ > [Cu(4-mphen)(aa)]+ > [Cu(5-mphen)(aa)]+ > [Cu(5-nphen)(aa)]+. The stability constants of the ternary complexes decrease in the following order: [Cu(m/n-sphen)(gly)]+ > [Cu(m/n-sphen)(tyr)]+, which is identical to the sequence found for the binary complexes of Cu(II) with gly and tyr.  相似文献   
2.
In the mol­ecule of the title compound, C26H21N3O5S, a new type of sulfonamide derivative with potential antibacterial activity, the flavone moiety is almost planar. The isoxazole and amino­phenyl rings are also planar and make dihedral angles of 77.0 (2) and 81.4 (1)°, respectively, with the best plane of the flavone ring system. The crystal structure is stabilized by intra‐ and inter­molecular hydrogen bonds.  相似文献   
3.
In the title mol­ecule, C15H11NO4S, the phenyl and benzene rings are quite planar, with maximum deviations from planarity of 0.009 (2) and 0.004 (1) Å, respectively. The γ‐pyrone ring deviates from planarity and makes a dihedral angle of 8.3 (3)° with the 2‐phenyl substituent. The sulfon­amide group is involved in N—H?O hydrogen bonding.  相似文献   
4.
In this study, it is aimed to investigate the synthesis and the calcium antagonistic activity of some flavone derivatives which contain the 1,4-dihydropyridine ring system at the A ring of the flavone nucleus. For this purpose we first synthesized 6-formylflavone and then twelve 1,4-dihydropyridine derivatives were synthesized by the reaction of 6-formylflavone with alkylacetoacetates, acetoacetanilide and methyl or ethyl aminocrotonate. Conformational analysis was performed for compound 3a . The calcium antagonistic activity of compound 2a was examined using nifedipine as the reference compound.  相似文献   
5.
In this study the binary and ternary complexes of copper(II) with substituted 1,10-phenanthrolines [s-phen: 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (dmphen) and 5-nitro-1,10-phenanthroline (nphen)] and l-amino acids [aa: l-phenylalanine (phe), l-tyrosine (tyr) and l-tryptophan (trp)] have been investigated using potentiometric methods in 0.1 mol·L?1 KCl aqueous ionic media at 298.2 K. The protonation constants of the ligands and the stability constants of the binary and ternary complexes of Cu(II) with the ligands were calculated from the potentiometric data using the “BEST” software package. It was inferred that the aromatic 1,10-phenanthrolines act as a primary ligand in the ternary complexes, while the oxygen and nitrogen donor-containing amino acids are secondary ligands. The observed values of Δlog10 K indicate that the ternary complexes are more stable than the binary ones, suggesting no interaction takes place between the ligands in the ternary complexes. The magnitudes of the measured stability constants of all of the ternary complexes are in the order [Cu(s-phen)(trp)]+ > [Cu(s-phen)(tyr)]+ > [Cu(s-phen)(phe)]+, which is identical to the sequence found for the binary complexes of Cu(II) with the amino acids. When the substituted 1,10-phenanthroline is changed, the stability constants of the ternary complexes decrease in the following order: [Cu(dmphen)(aa)]+ > [Cu(phen)(aa)]+ > [Cu(nphen)(aa)]+.  相似文献   
6.
In this paper, three new copper (II) complexes, [Cu(4‐mphen)(tyr)(H2O)]ClO4 (1) , [Cu(5‐mphen)(tyr)(H2O)]ClO4·1.5H2O (2) and [Cu (tmphen)(tyr)(NO3)]0.5H2O (3) (4‐mphen: 4‐methyl‐1,10‐phenanthroline, 5‐mphen: 5‐methyl‐1,10‐phenanthroline, tmphen: 3,4,7,8‐tetramethyl‐1,10‐phenanthroline and tyr: L‐tyrosine), were synthesized and characterized using elemental analyses, FT‐IR, ESI‐MS, cyclic voltammetry and single‐crystal X‐ray diffraction. It was found that the complexes adopt a distorted five‐coordinate square pyramidal geometry. The interaction of the three complexes with calf thymus DNA was also investigated using UV–visible absorption spectra, ethidium bromide and Hoechst 33258 displacement assay and thermal denaturation. The DNA cleavage activity of the complexes, monitored using gel electrophoresis, showed significant damage of the pUC19 plasmid DNA. Binding activity of bovine serum albumin (BSA) reveals that these complexes can strongly quench the fluorescence of BSA through a static quenching mechanism. The results suggested that interaction of the complexes with DNA occurred through a partial intercalation into the minor grooves of DNA. In addition, interaction of the complexes with bovine serum albumin quenched the fluorescence emission of the tryptophan residues of the protein binding constants and thermodynamic parameters were obtained from the fluorescence quenching experiments at different temperatures. Free radical scavenging activities of the complexes were determined by various in vitro assays such as 1,1‐diphenyl‐2‐picryl‐hydrazyl free radicals (DPPH˙) and H2O2 scavenging methods. In addition, the cytotoxicity of these complexes in vitro on tumor cell lines (Caco‐2 and MCF‐7) was examined by XTT and showed better antitumor effect on the tested cells. ROS (reactive oxygen species) and comet experiments are consistent with each other and these complexes lead to DNA damage via the production of ROS. The effect of the hydrophobic properties of the synthesized complexes on DNA and BSA binding activities were discussed.  相似文献   
7.
Three novel water‐soluble copper(II) complexes – {[Cu(phen)(trp)]ClO4·3H2O}n ( 1 ), {[Cu(4‐mphen)(trp)]ClO4·3H2O}n ( 2 ) and [[Cu(dmphen)(trp)(MeOH)][Cu(dmphen)(trp)(NO3)]]NO3 ( 3 ) (phen: 1,10‐phenanthroline; 4‐mphen: 4‐methyl‐1,10‐phenanthroline; dmphen: 4,7‐dimethyl‐1,10‐phenanthroline; trp: l ‐tryptophan) – have been synthesized and characterized using various techniques. Complexes 1 and 2 are isostructural, and exist as one‐dimensional coordination polymers. Complex 3 consists of two discrete copper(II) complexes containing [Cu(trp)(dmphen)(MeOH)]+, [Cu(trp)(dmphen)(NO3)] and one nitrate anion. The binding interaction of the complexes with calf thymus DNA (CT‐DNA) was investigated using thermal denaturation, electronic absorption and emission spectroscopic methods, revealing that the complexes could interact with CT‐DNA via a moderate intercalation mode. The binding activity of the complexes to CT‐DNA follows the order: 3  >  2 > 1 . The pUC19 DNA cleavage activity of the complexes was investigated in the absence and presence of external agents using the agarose gel electrophoresis method. Especially, in the presence of H2O2 as an activator, the pUC19 DNA cleavage abilities of the complexes are clearly enhanced at low concentration. Addition of hydroxyl radical scavenger dimethylsulfoxide shows a marked inhibition of the pUC19 DNA cleavage activity of the complexes. In vitro cytotoxic effect of the complexes was examined on human tumor cell lines (Caco‐2, A549 and MCF‐7) and healthy cells (BEAS‐2B). The potent cytotoxic effect of complex 3 , with IC50 values of 1.04, 1.16 and 1.72 μM, respectively, is greater relative to clinically used cisplatin (IC50 = 22.70, 31.1 and 22.2 μM) against the Caco‐2, A549 and MCF‐7 cell lines.  相似文献   
8.
New binary and ternary copper(II) complexes, [Cu(py‐phen)2(NO3)]NO3 ( 1 ), [Cu2(py‐phen)2(gly)2(NO3)2(H2O)2]?3H2O ( 2 ) and [Cu2(py‐phen)2(tyr)2(H2O)2](NO3)2?3H2O ( 3 ) (py‐phen: pyrazino[2,3‐f][1,10]phenanthroline; gly: glycine; tyr: tyrosine), have been synthesized and characterized using CHN analysis, electrospray ionization mass spectrometry, Fourier transform infrared spectroscopy and single‐crystal X‐ray diffraction. Interaction of these complexes with calf thymus DNA has been investigated using absorption spectral titration, ethidium bromide and Hoechst 33258 displacement assay and thermal denaturation measurements. These complexes were found to be efficient cleaving agents and cleavage reactions were mediated by hydrolytic and oxidative pathways. The interaction between these complexes and bovine serum albumin (BSA) was investigated using electronic absorption and fluorescence spectroscopy. The experimental results show that the fluorescence quenching mechanism of these complexes and BSA is a static quenching process. Furthermore, in vitro cytotoxicities of these complexes against tumour cell lines (Caco‐2, MCF‐7 and A549) and healthy cell line (BEAS‐2B) showed that they exhibited anticancer activity with low IC50 values. These complexes were markedly active against the cell lines and can be good drug candidates that are effective and safe for healthy tissue.  相似文献   
9.
The crystal and molecular structure of the title compound has been determined by direct methods, and refined to a finalR of 0.070 for 1466 observed reflections. The compound crystallizes in space group P2l/n with cell dimensionsa=10.706(8),b=21.127(11),c=12.038(10) Å, Z=4.1,4-dihydropyridine ring adopts a boat shaped conformation. The flavon molecule is planar and it's phenyl ring is almost perpendicular to the 1,4-DHP. The C36 atom of the allyl group shows disorder.  相似文献   
10.
The equilibrium reactions of yttrium(III) ion with dihydroxybenzoic acids (2,3-dihydroxybenzoic acid (2,3-DHBA) and 3,4-dihydroxybenzoic acid (3,4-DHBA)) (H(3)L) were investigated in aqueous solution by means of potentiometric and spectroscopic methods, in 0.1 mol.l(-1) ionic strength medium at 25 degrees C. The stability constants are reported for YL, YL(HL)(2-) and YL(2)(3-)- type mononuclear complexes. 2,3-DHBA can bind Y(III) ion strongly and the salicylate mode is effective over the acidic pH range. But in higher pH range, 2,3-DHBA and 3,4-DHBA act more efficiently through catecholate groups. The complexes of 2,3-DHBA are more stable than the complexes of 3,4-DHBA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号