首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   9篇
物理学   1篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  1996年   1篇
排序方式: 共有10条查询结果,搜索用时 609 毫秒
1
1.
The reaction of [Os3(CO)12] with tetramethylthiourea in the presence of a methanolic solution of Me3NO·2H2O at 60° yields the compounds [Os3(CO)11{η 1-SC(NMe2)2}] (1) in 56% yield and [Os3(CO)9(μ-OH)(μ-MeOCO){η 1-SC(NMe2)2}] (2) in 10% yield in which the tetramethylthiourea ligand is coordinatedvia the sulfur atom at an equatorial position. Compound2 is a 50 e? cluster with two metal-metal bonds and the hydroxy and methoxycarbonyl ligands bridging the open metal-metal edge. In contrast, the analogous reaction of [Os3(CO)12] with thiourea gives the compounts [(μ-H)Os3(CO)10{μ-NHC(S)NH2}] (3) in 8% yield and [(μ-H)Os3(CO)9{3-NHC(S)NH2}] (4) in 30% yield. In3, the thioureato ligand bridges two osmium atomsvia the sulfur atom, whereas in4 in addition to the sulfur bridge, one of the nitrogen atoms of thioureato moiety bonds to the remaining osmium atom. The decacarbonyl compounds 3 can also be obtained in 50% yield from the reaction of [Os3(CO)10(MeCN)2] with thiourea at ambient temperature. Compound3 converts to4 (65%) photochemically. Compound1 reacts with PPh3 and acetonitrile at ambient temperature to give the simple substitution products [Os3(CO)11(PPh3)] and [Os3(CO)11(MeCN)], respectively, while with pyridine, the oxidative addition product [(μ-H)Os3(CO)10(μ-NC5H4] is formed at 80°C. All the new compounds are characterized by IR,1-H-NMR and elemental analysis together with the X-ray crystal structures of1,2 and4. Compound1 crystallizes in the triclinic space group P $P\bar 1$ with unit cell parametersa = 8.626(3) Å,b = 11.639(3) Å,c = 12.568(3_ Å,α = 84.67(2)°,β = 75.36(2)°,γ = 79.49(3)°,V = 1199(1) Å3, andZ = 2. Least-squares refinement of 4585 reflections gave a final agreement factor ofR = 0.0766 (R w = 0.0823). Compound2 crystallizes in the monoclinic space group P21/n with unit cell parametersa = 9.149(5) Å,b = 17.483(5) Å,c = 15.094(4) Å,β = 91.75(2)°,V = 2413(2) Å3, andZ = 4. Least-squares refinement of 3632 reflections gave a final agreement factor ofR = 0.0603 (R w = 0.0802). Compound4 crystallizes in the monoclinic space group C2/c with unit cell parametersa = 13.915(7) Å,b = 14.718(6) Å,c = 17.109(6) Å,β = 100.44(3)°,V = 3446(5) Å3, andZ = 8. Least-squares refinement of 2910 reflections gave a final agreement factor ofR = 0.0763 (R w = 0.0863).  相似文献   
2.
3.
The enantiomeric composition and absolute configuration of 4-Amino-3-(benzo[b]furan-2-yl)-Butanoic Acids and of 4-Amino-3-(thien-2-yl)-Butanoic Acids 1 may be accurately determined by 1H and 13C nuclear magnetic resonance analysis of the corresponding derivatives 3 prepared by reaction with chiral reagents. Correlation with HPLC is signaled.  相似文献   
4.
Species of the genus Achillea have been used in traditional folk medicine for centuries. In Europe taxa of the Achillea millefolium group are widely spread, their correct taxonomic differentiation by morphological and anatomical characteristics encounters some difficulties. Several species of the polyploid A. millefolium group however, can be characterised by their distinct sesquiterpene pattern. Analysis is usually performed by LC using conventional RP stationary phases. Likewise, it has been proven that non-porous RP stationary phases are an excellent alternative for sensitive and more rapid separations of plant extracts. In the present work a Kovasil MS-C18 1.5 μm non-porous packing was used with an acetonitrile-water gradient for the analysis of Achillea flower extracts. Detection and identification of the respective sesquiterpenes has been achieved by diode array detection and LC coupled APCI+ and ESI+ mass spectrometry.  相似文献   
5.
Liquid chromatography coupled to negative electrospray ionization (ESI) tandem mass spectrometry (MS/MS) employing a time-of-flight tandem mass spectrometer was used in the structural determination of phenolic compounds and sesquiterpenoids occurring in the extract from Artemisia rupestris L. A total of 91 compounds including chlorogenic acid derivatives, flavonoids (aglycone, O-glycosyl, C-glycosyl and C,O-glycosyl), 2-phenoxychromones and guaiane sesquiterpenoids were identified by comparing the retention time and fragmentation behavior with reference standards or according to accurate mass measurement and the characteristic fragmentation at low and high collision energy. Most of these compounds were reported in Artemisia rupestris L. for the first time. Meanwhile, the proposed pathway and the major diagnostic fragmentation of 2-phenoxychromone and rupestonic acid were investigated to trace 2-phenoxychromone and rupestonic acid derivatives in crude plant extracts. According to these rules, we have successfully characterized five potential novel compounds including three 2-phenoxychromones (6-demethoxy-4'-O-methylcapillarisin-O-hexosylglucuronide, 6-demethoxy-4'-O-methylcapillarisin-O-pentosylhexoside and 6-demethoxy-4'-O-methylcapillarisin-O-deoxyhexosylhexoside) and two sesquiterpenoids (hexosyl-glycurinide-rupestonic acid and hexoside-rupestonic acid).  相似文献   
6.
This communication reports the beneficial effects of co-gasification of biomass and residual oil to produce syngas. In this regard, various blends of glucose (a biomass surrogate) to vacuum gas oil (VGO) have been employed to investigate the synergic effects on the gasification process. The non-isothermal co-gasification experiments were conducted in a thermogravimetric analyzer at different heating rates and gasifying agents. The analysis showed that the co-gasification rate increased with the increase of glucose content in the feedstock. The presence of the oxygen in the biomass molecules helped the overall gasification process. The maximum gasification rate of 42.70 wt/min (DTGmax) was observed with 25 wt% glucose containing sample. The use of gasifying agents appeared to have some influence, especially during high temperature gasification of the glucose-VGO blends. At a same gasification temperature, the co-gasification rate of glucose-VGO blends were found to be 125.7 wt/min and 98.59 wt%/min for N2 and CO2, respectively. The kinetics of the co-gasification of glucose-VGO blends was conducted based on modified random pore model using TGA experimental data and implemented in MATLAB. The estimated activation energy and rate constants were found to be consistent to the observed co-gasification rates. The apparent activation energies of co-gasification of VGO/biomass blends with different weight percentages shows values ranging 60.56–48.25 kJ/mol. The kinetics analysis suggested that the addition of biomass helped to increase the reaction rate by lowering the activation energy required for accomplishing the reactions compared with petroleum carbonaceous feedstocks. The reaction rate constants isotherms are plotted to show that the k-values are exhibiting similar trends at moderate heating rates between 20 and 60 °C/min. This remark arises due to the nature of the reactions involved which are considered to be inherently similar in this range of heating rate.  相似文献   
7.
Today, in the presence of global warming, understanding how plants respond to drought stress is essential to meet the challenge of developing new cultivars and new irrigation strategies, consistent with the maintenance of crop productivity. In this context, the study of the relation between plants and water is of central interest for modeling their responses to biotic and abiotic constraints. Paradoxically, there are very few direct and noninvasive methods to quantify and measure the level and the flow of water in plants. The present work aims to develop a noninvasive methodology for living plant based on nuclear magnetic resonance (NMR) at low magnetic field and imaging (MRI) to tackle the issue of water quantity in plants. For this purpose, a portable NMR device measuring the signal level at 8 mT was built. This instrument addresses specific challenges such as miniaturization, accessibility, and overheating in order to maintain the plant intact of time over long period. Time dependence of the water content in sorghum plants is reported under abiotic stress as well as the fraction of transpirable soil water and the photosynthesis activity through the leaves. At high magnetic field (9.4 T), T2 maps were acquired on the same sorghum plants at two time points. The combination of these approaches allows us to identify ecophysiological biomarkers of drought stress. One particular interesting result concerns the spatial distribution of water in two anatomically contrasted sorghum genotypes.  相似文献   
8.
The growth mechanism of one-dimensional metal oxide nanotubular structures is of tremendous current interest to tailor materials using "green" synthetic procedures for emerging industries in alternative energy and biomaterials. In this study, ZrO(2)-modified TiO(2) nanorods and tubular structures were successfully synthesized via a surfactant-free sol-gel route using supercritical carbon dioxide (scCO(2)) as the solvent/drying agent. The effect of metal alkoxide concentration (0.35-1.4 mol/L), acid/metal alkoxide ratio (R = 3-7), and Zr ratio (0-20%) was examined on the morphology and crystallinity of the resulting nanostructures as measured by electron microscopy (SEM and TEM), EDX, XPS, and XRD. The electron microscopy results showed that the crystal growth of the synthesized binary Ti-Zr nanomaterials could be tailored by changing the operating variables with nanotubular structure formed at metal alkoxide concentration of 1.2 mol/L, R = 5-6, and Zr ratio between 4% and 20%. Gelation kinetics for this new system was also studied and revealed that increasing alkoxide concentration and R value enhanced the gelation kinetics. In situ and powder FTIR results revealed that this Ti-Zr binary system follows a similar reaction scheme to that of either single-component system, showing the flexibility of this approach for tailoring nanotubular production.  相似文献   
9.
Monoclonal antibodies are subject to a variety of degradation mechanisms, therefore orthogonal techniques are required to demonstrate product quality. In this study, the three individual antibodies comprising a multi-antibody drug product, XOMA 3AB were evaluated by both cation-exchange (CEX) and anion-exchange chromatography (AEX). In contrast to CEX analysis which showed only a single, broad peak for the force-oxidized antibodies, AEX analysis of Ab-A (pI=7.6) revealed two more basic peaks. Ab-B (pI=6.7) bound but exhibited only a single major peak while Ab-C (pI=8.6) flowed through. Peptide mapping LC/MS analysis of the isolated Ab-A fractions demonstrated that the basic peaks resulted from oxidation in a complementary determining region (CDR). Differential scanning calorimetry (DSC) analysis of the oxidized Ab-A species showed a decrease in the Fab melting point for the oxidized species consistent with unfolding of the molecule. Greater/lesser surface exposure of ionic residues resulting from a conformational change provides a likely explanation for the dramatic shift in retention behavior for the Ab-A oxidized variants. Peptide mapping analysis of the Ab-B antibody showed, in contrast to Ab-A, no detectable CDR oxidation. Hence, the lack of separation of oxidized variants in Ab-B can be explained by the absence of CDR oxidation and the associated changes in secondary/tertiary structure which were observed for oxidized Ab-A. In summary, anion-exchange HPLC shows potential as an orthogonal analytical technique for assessing product quality of monoclonal antibody therapeutics. In the case of the XOMA 3AB drug product, two of the antibodies bound and one, Ab-A, exhibited separation of CDR oxidized variants.  相似文献   
10.
This work aimed to develop and evaluate a post-acquisition data processing strategy, referred to as a mass defect filter (MDF), for rapid target the resin glycosides in root of Convolvulus scammonia by setting mass rang and mass defect range from high-resolution MS data. The full-scan mass data were acquired by high-performance liquid chromatography coupled with Q Exactive Plus hybrid quadrupole-orbitrap mass spectrometer that featured high resolution, mass accuracy, and sensitivity. To screen resin glycosides, three parent filter m/z 871, m/z 853, and m/z 869 combined with diagnostic fragment ions (DFIs) approach were applied to remove the interference from complex herbal extract. The targeted components were characterized based on detailed fragment ions. Using this approach, 80 targeted components, including 22 glycosidic acids and 58 resin glycosides were tentatively identified. The present results suggested that the proposed MDF strategy would be adaptable to the analysis of complex system in relevant filed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号