首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学   15篇
物理学   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2005年   1篇
  2002年   3篇
  1982年   1篇
  1975年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Eight new beta-N-substituted acyl hydrazides along with their corresponding acyl derivatives were synthesized and screened for in vitro beta-glucuronidase inhibition and found to be active against the enzyme. All of these compounds were found to be noncompetitive inhibitors except for N'-(2-cyanoethyl)-4-hydroxy benzohydrazide (10), which was found to be an uncompetitive inhibitor. Structure-activity relationship studies indicated that the benzyloxy group present in compounds 12 and 13 is responsible for the beta-glucuronidase inhibition activity.  相似文献   
2.
The microbial transformation of an oral contraceptive, mestranol (1) by Cunninghamella elegans yielded two hydroxylated metabolites, 6beta-hydroxymestranol (2) and 6beta,12beta-dihydroxymestranol (3). Metabolite 3 was found to be a new compound. These metabolites were structurally characterized on the basis of spectroscopic techniques.  相似文献   
3.
Non-enolisable aldehydes (I) and active methylene compounds (II) react in the presence of tellurium(IV) tetrachloride (catalytic) to give the corresponding α, β-unsaturated carbonyl compounds (III) in excellent yields and high purity.  相似文献   
4.
Under electron impact, 6-thiotheophyllines eliminate various fragments from the pyrimidine moiety. In a retro Diels-Alder reaction, they lose the fragment X?C?NCH3 from positions 1 and 2 of the pyrimidine ring. In 6-sulfinyltheophyllines, the sulfinyl group is the main target for fragmentation; it can lose either oxygen or sulfur, and the abundance of [M—16]+ and [M—32]+ is much higher than the abundance of the molecular ion. Elimination of the sulfur atom of the 6-sulfinyl substituent, with retention of its oxygen, may be explained by intermediate formation of a ring. All further fragmentations of the 6-sulfinyl derivatives proceed by a primary loss of oxygen or sulfur, followed by elimination of fragments from the pyrimidine moiety, similar to the primary processes, observed in the mass spectra of the 6-thiotheophyllines.  相似文献   
5.
Journal of Radioanalytical and Nuclear Chemistry - Geochemical characterization of Shahbazpur structure (Bengal Foredeep) in terms of elemental abundances obtained from INAA are presented by...  相似文献   
6.
Structural elucidation and gas‐phase fragmentation of ten withanolides (steroidal lactones) were studied using a positive ion electrospray ionization quadropole time‐of‐flight mass spectrometry (ESI‐QqTOF‐MS/MS) hybrid instrument. Withanolides form an important class of plant secondary metabolites, known to possess a variety of biological activities. Withanolides which possess hydroxyl groups at C‐4, C‐5, C‐17, C‐20, and C‐27, and an epoxy group at C‐5/C‐6, were evaluated to determine the characteristic fragments and their possible pathways. ESI‐QqTOF‐MS (positive ion mode) showed the presence of the protonated molecules [M + H]+. Low‐energy collision‐induced dissociation tandem mass spectrometric (CID‐MS/MS) analysis of the protonated molecule [M + H]+ indicated multiple losses of water and the removal of the C‐17‐substituted lactone moiety affording the [M + H–Lac]+ product ion as the predominant pathways. However, withanolides containing a hydroxyl group at C‐24 of the lactone moiety showed a different fragmentation pathway, which include the loss of steroidal part as a neutral molecule, with highly diagnostic ions at m/z 95 and 67 being generated from the cleavage of lactone moiety. Our results also determined the influence of the presence and positions of hydroxyl and epoxy groups on product ion formation and stability. Moreover, the knowledge of the fragmentation pattern was utilized in rapid identification of withanolides by the LC/MS/MS analysis of a Withania somnifera extract. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
7.
ABSTRACT: A rapid and reproducible stability indicating TLC method was developed for the determination of prednisolone acetate and chloramphenicol in presence of their degraded products. Uniform degradation conditions were maintained by refluxing sixteen reaction mixtures for two hours at 80°C using parallel synthesizer including acidic, alkaline and neutral hydrolysis, oxidation and wet heating degradation. Oxidation at room temperature, photochemical and dry heating degradation studies were also carried out. Separation was done on TLC glass plates, pre-coated with silica gel 60F-254 using chloroform: methanol (14:1 v/v). Spots at Rf 0.21 ± 0.02 and Rf 0.41 ± 0.03 were recognized as chloramphenicol and prednisolone acetate, respectively. Quantitative analysis was done through densitometric measurements at multiwavelength (243 nm, λmax of prednisolone acetate and 278 nm, λmax of chloramphenicol), simultaneously. The developed method was optimized and validated as per ICH guidelines. Method was found linear over the concentration range of 200-6000 ng/spot with the correlation coefficient (r2 ± S.D.) of 0.9976 ± 3.5 and 0.9920 ± 2.5 for prednisolone acetate and chloramphenicol, respectively. The developed TLC method can be applied for routine analysis of prednisolone acetate and chloramphenicol in presence of their degraded products in their individual and combined pharmaceutical formulations.  相似文献   
8.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly infectious zoonotic virus first reported into the human population in September 2012 on the Arabian Peninsula. The virus causes severe and often lethal respiratory illness in humans with an unusually high fatality rate. The N-terminal domain (NTD) of receptor-binding S1 subunit of coronavirus spike (S) proteins can recognize a variety of host protein and mediates entry into human host cells. Blocking the entry by targeting the S1-NTD of the virus can facilitate the development of effective antiviral drug candidates against the pathogen. Therefore, the study has been designed to identify effective antiviral drug candidates against the MERS-CoV by targeting S1-NTD. Initially, a structure-based pharmacophore model (SBPM) to the active site (AS) cavity of the S1-NTD has been generated, followed by pharmacophore-based virtual screening of 11,295 natural compounds. Hits generated through the pharmacophore-based virtual screening have re-ranked by molecular docking and further evaluated through the ADMET properties. The compounds with the best ADME and toxicity properties have been retrieved, and a quantum mechanical (QM) based density-functional theory (DFT) has been performed to optimize the geometry of the selected compounds. Three optimized natural compounds, namely Taiwanhomoflavone B (Amb23604132), 2,3-Dihydrohinokiflavone (Amb23604659), and Sophoricoside (Amb1153724), have exhibited substantial docking energy >−9.00 kcal/mol, where analysis of frontier molecular orbital (FMO) theory found the low chemical reactivity correspondence to the bioactivity of the compounds. Molecular dynamics (MD) simulation confirmed the stability of the selected natural compound to the binding site of the protein. Additionally, molecular mechanics generalized born surface area (MM/GBSA) predicted the good value of binding free energies (ΔG bind) of the compounds to the desired protein. Convincingly, all the results support the potentiality of the selected compounds as natural antiviral candidates against the MERS-CoV S1-NTD.  相似文献   
9.
Three glycosides and a long chain alcohol were isolated from the bulbs of Polianthes tuberosa, these were identified as 3,29-dihydroxystigmast-5-ene-3-O-beta-D-galactopyranoside (1), ethyl beta-D-galactopyranoside (2), ethyl-alpha-D-galactopyranoside (3), and 1-tricosanol (4). The structures were determined by extensive spectroscopic and chemical methods. All four isolated compounds were screened for their cytotoxicity, antibacterial and antifungal activities, none of the compounds showed any significant activity.  相似文献   
10.
A rapid and convenient method is reported for the quantitative pinacolization of aromatic carbonyl compounds with tellurium powder and potassium hydroxide in methanol at ambient temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号