首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学   16篇
物理学   1篇
  2023年   1篇
  2013年   2篇
  2012年   1篇
  2007年   5篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1994年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Kinetics of the interaction of Cd(II)-histidine complex with ninhydrin has been carried out at pH 5.02 (acetic acid-sodium acetate buffer) under varying conditions of reactant concentrations, temperature, and surfactant concentrations. The order of the reaction with respect to Cd(II)-histidine complex was unity while it was fractional with respect to ninhydrin. On the basis of these studies a mechanism has been proposed. In the absence of the surfactants, the reaction followed rate equation: while, in presence of surfactants, the following rate equation was obeyed: Anionic micelles of sodium dodecyl sulphate catalyze the reaction with the rate reaching a maximum at ca. 0.10 mol dm−3 surfactant. The surfactant decreases activation enthalpy and makes it more negative. Cationic micelles of cetyltrimethylammonium bromide strongly inhibit the reaction and increase the activation enthalpy but make the activation entropy more positive than the SDS micelles. Added salts (KNO3 and NaCl) inhibit the catalysis, and the effect is more with the latter. The rate constants, binding constants with surfactants, and the index of cooperativity have been evaluated. © 1997 John Wiley & Sons, Inc.  相似文献   
2.
The kinetics of oxidation of l-methionine by chromic acid in acidic medium (pH=0.83–2.2) has been studied spectrophotometrically. The effect of l-methionine and chromium(VI) concentrations on the rate of the reaction was determined. The reaction rate decreases with increasing the pH of the medium. The kinetics of the formation of a chromium(III) complex conform to the rate law:with k1=7.5×10–2s–1 and Kes1=43.85 at constant [H+]=1.9×10–2moldm–3 and [l-methionine]T= 2.0×10–2moldm–3. The same values were found with [l-methionine]T variation at constant [H+]. The reaction proceeds through formation of chromium(VI)-l-methionine ester in a rapid pre-equilibrium step, followed by a slower redox reaction of the ester. The present study provides kinetic evidence for formation of a complex ion (ester). One mole of Cr2O72– oxidizes four moles of l-methionine, which acts as a monodentate ligand and binds to chromium(VI) through the sulfur atom. The coordinated sulfur atom of l-methionine–chromium(VI) ester is responsible for the oxidative degradation (breaking of the C1-C2 bond) of l-methionine. Coordinated oxygen of the carboxylate group inhibits the cleavage of the C1-C2 bond.  相似文献   
3.
Kinetics of the hydrolysis of isoproturon by hydrochloric acid has been studied spectrophotometrically in the absence and the presence of anionic sodium lauryl sulfate (NaLS) micelles. The anionic micelle was found to increase the rate of reaction. The reaction followed first-order kinetics with respect to isoproturon and was linearly dependent upon [HCl]. In both aqueous and micellar pseudophases, the reaction was started with the protonation of the amino group of isoproturon followed by attack of water to yield phenylcarbamic acid and the corresponding amine, thus obeying the addition–elimination mechanism. The surfactant decreased the activation entropy. The binding constant in consistence with the rate constants was evaluated on the basis of pseudophase ion-exchange model. The added salts (NaCl and KCl) decreased the rate of reaction due to the exclusion of H+ from micellar surfaces.  相似文献   
4.
The kinetics of formation of N‐diketohydrindylidenehistidinatocopper(II) complex has been investigated in the presence of cationic cetyltrimethylammonium bromide (CTAB) surfactant in aqueous medium (pH = 5.0). Similarly in aqueous solution, the reaction followed irreversible first‐order kinetics with respect to [Ninhydrin]. Although the reaction mechanism remained unaltered by micelles, a typical kψ‐[CTAB] profile was observed, that is, with a progressive increase in [CTAB], the reaction rate increased, reached a maximum value, and then decreased. The results are treated quantitatively in terms of the kinetic pseudo‐phase model. Activation parameters were also evaluated and a large decrease in ΔS# shows the formation of a well‐structured activated complex. It was found that anionic sodium dodecyl sulphate (SDS) and non‐ionic Triton X‐100 (TX‐100) surfactants have no effect on the reaction. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 729–736, 1999  相似文献   
5.
Kinetics of the interaction of histidine and histidine methyl ester with ninhydrin under varying concentrations of reactants, anionic (sodium dodecyl sulphate, SDS), cationic (cetyltrimethylammonium bromide, CTAB) and non‐ionic (Triton X‐100, TX‐100) micelles have been carried out. Rate of the reaction was found to be independent of the initial concentration of histidine (and histidine methyl ester) but was dependent on [Ninhydrin]. The SDS micelles had no effect on the rate of the reaction. In the presence of the CTAB micelles a small enhancement in the rate was observed. The rate − [CTAB] profile showed that the increase in [CTAB] increased the rate up to a maximum value and a further increase had a decreasing effect on the rate. The rate was enhanced by TX‐100 also but, unlike CTAB micelles, TX‐100 possessed a curve without peak for the rate − [TX‐100] profile. The following rate equation was obeyed by the reaction in CTAB and TX‐100 micelles: Values of kw, km, and KS were evaluated and are reported herein. ©1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 103–111, 1999  相似文献   
6.
The effect of cationic micelles of cetyltrimethylammonium bromide (CTAB) and N-cetylpyridinium bromide (CPB) on the interaction of l-leucine and l-phenylalanine with ninhydrin have been studied at 70 degrees C. Both surfactants strongly catalyze the reactions. The reaction rates are higher in CTAB micelles than in CPB micelles. Quantitative kinetic analysis has been performed on the basis of a pseudo-phase model. The influence of different salts on the reaction rates has also been seen and it is found that tightly bound/incorporated counterions are the most effective. Copyright 1999 Academic Press.  相似文献   
7.
The kinetics of alkaline hydrolysis of procaine under the pseudo–first‐order condition ([OH?] ? [procaine]) has been carried out. N,N‐Diethylaminoethanol and p‐aminobenzoate anion were obtained as the hydrolysis product. The rate of hydrolysis was found to be linearly dependent upon [NaOH]. The addition of cationic cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DDTAB) and tetradecyltrimethylammonium bromide, and anionic sodium dodecyl sulfate (SDS) micelles inhibited the rate of hydrolysis. The maximum inhibitive effect on the reaction rate was observed for SDS micelles, whereas among the cationic surfactants, CTAB inhibited most. The variation in the rate of hydrolysis of procaine in the micellar media is attributed to the orientation of a reactive molecule to the surfactant and the binding constant of procaine with micelles. The rate of hydrolysis of procaine is negligible in DDTAB micelles. The observed results in the presence of cationic micelles were treated on the basis of the pseudophase ion exchange model. The results obtained in the presence of anionic micelles were treated by the pseudophase model, and the various kinetic parameters were determined. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 45: 1–9, 2013  相似文献   
8.
The kinetics of the hydrolysis of fenuron in sodium hydroxide has been investigated spectrometrically in an aqueous medium and in cationic micelles of cetyltrimethylammonium bromide (CTAB) medium. The reaction follows first‐order kinetics with respect to [fenuron] in both the aqueous and micellar media. The rate of hydrolysis increases with the increase in [NaOH] in the lower concentration range but shows a leveling behavior at higher concentrations. The reaction followed the rate equation, 1/kobs = 1/k + 1/(kK[OH?]), where kobs is the observed rate constant, k is rate constant in aqueous medium, and k is the equilibrium constant for the formation of hydroxide addition product. The cationic CTAB micelles enhanced the rate of hydrolytic reaction. In both aqueous and micellar pseudophases, the hydrolysis of fenuron presumably occurs via an addition–elimination mechanism in which an intermediate hydroxide addition complex is formed. The added salts decrease the rate of reaction. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 638–644, 2007  相似文献   
9.
The hydrolysis of 2‐chloro‐3,5‐dinitropyridine by sodium hydroxide in the presence of micelles of cetyltrimethylammonium bromide (CTABr), cetyltrimethylammonium chloride (CTACl) and sodium dodecyl sulfate (SDS) has been studied. The reaction follows a consecutive reaction path involving the formation of a long‐lived intermediate 3 and finally giving the product, 3,5‐dinitro 2‐pyridone 2 . The mechanism follows an addition of the nucleophile, ring opening and ring closure (ANRORC) reaction path. The rate constant was observed to be first‐order dependent on [OH?]. The rate of reaction increased on increasing [CTABr] and, after reaching to the maxima, it started decreasing. The anionic SDS micelles inhibited the rate of hydrolysis. The results of the kinetic experiments were treated with the help of the pseudophase ion exchange model and the Menger–Portnoy model. The added salts, viz. NaBr, Na‐toluene‐4‐sulphonate, and (CH3)4NBr on varying [CTACl] and [SDS] inhibited the rate of reaction. The various kinetic parameters in the presence and absence of salts were determined and are reported herewith. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
10.
The kinetics of autoxidation of adrenaline and [Cu(adrenaline)]2+ complex by dissolved oxygen in alkaline aqueous and micellar media has been studied. The reaction is initiated by the removal of amino-H+ protons of adrenaline by hydroxide ion, followed by cyclization. The values of (1/k obs) for the autoxidation of both species were found to be linearly dependent upon 1/[OH?]. The reaction follows a consecutive pathway in which the intermediate adrenochrome remains stable for few minutes, and then undergoes further reactions to yield adrenolutin and other products. The [Cu(adrenochrome)]+ complex is stable for a few hours. Studies on the effects of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) on the reactivity of both species revealed different behaviors. The micelles of CTAB catalyzed the rates of autoxidation for both species, whereas SDS micelles inhibited the autoxidation of adrenaline but catalyzed the rate of autoxidation of [Cu(adrenaline)]2+. Addition of the reactive counterion surfactant, cetyltrimethylammonium hydroxide (CTAOH) initially increased the rate constant with the increasing [CTAOH], until it reached a plateau for k ψ ?[CTAOH]. Salts such as NaCl, NaBr, tetramethyl ammonium bromide, and tetraethyl ammonium bromide increased the rate when added at lower concentrations, but had negligible effect at higher concentrations. The results obtained in micellar media were treated according to Berezin’s Pseudophase Model. The various kinetic parameters for the reactions occurring in aqueous and in micellar media are reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号