首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学   1篇
数学   2篇
物理学   13篇
  2014年   1篇
  2012年   1篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Setup operations are significant in some production environments. It is mandatory that their production plans consider some features, as setup state conservation across periods through setup carryover and crossover. The modelling of setup crossover allows more flexible decisions and is essential for problems with long setup times. This paper proposes two models for the capacitated lot-sizing problem with backlogging and setup carryover and crossover. The first is in line with other models from the literature, whereas the second considers a disaggregated setup variable, which tracks the starting and completion times of the setup operation. This innovative approach permits a more compact formulation. Computational results show that the proposed models have outperformed other state-of-the-art formulation.  相似文献   
5.
We present a convergence analysis of the spectral Lagrange-Galerkinmethod for mixed periodic/non-periodic convection-diffusionproblems. The scheme is unconditionally stable, independentof the diffusion coefficient, even in the case when numericalquadrature is used. The theoretical predictions are illustratedby a series of numerical experiments. For the periodic case,our results present a significant improvement on those givenby Süli & Ware (1991) SIAM J. Numer.Anal.28, 423-445).  相似文献   
6.
7.
8.
9.
Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development of targeted polymeric NPs and to highlight the challenges associated with the engineering of this novel class of therapeutics, including considerations of NP design optimization, development and biophysicochemical properties. Additionally, we highlight some recent examples from the literature, which demonstrate current trends and novel concepts in both the design and utility of targeted polymeric NPs (444 references).  相似文献   
10.
Time-resolved measurements of the transverse electric field associated with relativistic electron bunches are presented. Using an ultrafast electro-optic sensor close to the electron beam, the longitudinal profile of the electric field was measured with subpicosecond time resolution and without time-reversal ambiguity. Results are shown for two cases: inside the vacuum beam line in the presence of wake fields, and in air behind a beryllium window, effectively probing the near-field transition radiation. Especially in the latter case, reconstruction of the longitudinal electron bunch shape is straightforward.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号