首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2020年   1篇
  2017年   1篇
  2016年   3篇
排序方式: 共有5条查询结果,搜索用时 156 毫秒
1
1.
2.
The authors describe an electrochemical sensor for the breast cancer marker α-lactalbumin (αLA). It is based on the use of printed single-walled carbon nanotube (SWCNT) electrodes that were modified with polycatechol. Impedance-derived electrochemical capacitance spectroscopy (ECS) is applied for detection at an applied potential of ?0.14 V vs. Ag/AgCl reference electrode. The electrode was prepared in a two-step process. First, a dispersion of SWCNTs was drop-cast onto the surface of a poly(ethylene terephthalate) substrate to act as the working electrode. Next, catechol was electrochemically polymerized on the SWCNTs, prior to the immobilization of lysozyme. The strong interaction between lysozyme and αLA induced changes in the redox capacitance which are detected by ECS. The latter shows the device to be capable of detecting αLA in the 20 to 80 ng·mL?1 concentration range. The limit of detection is 9.7 ng·mL?1 at an S/N ratio of 3. The device was used to detect αLA in human blood serum with good recovery results.
Graphical abstract A sensitive biosensor for αLA was prepared by modifying SWCNT electrode with polycatechol and lysozyme. The electrochemical capacitance spectroscopy was used for the first time to selectively detect αLA in the blood in the range from 20 to 80 ng·mL?1.
  相似文献   
3.
A composite consisting of chitosan containing azidomethylferrocene covalently immobilized on sheets of reduced graphene oxide was drop-casted on a polyester support to form a screen-printed working electrode that is shown to enable the determination of nitrite by cyclic voltammetry and chronoamperometry. Both reduction and oxidation of nitrite can be accomplished due to the high electron-transfer rate of this electrode. Under optimal experimental conditions (i.e. an applied potential of 0.7 V vs. Ag/AgCl in pH 7.0 solution), the calibration plot is linear in the 2.5 to 1450 μM concentration range, with an ~0.35 μM limit of detection (at a signal-to-noise ratio of 3). The sensor was successfully applied to the determination of nitrite in spiked mineral water samples, with recoveries ranging between 95 and 101 %.
Graphical abstract We describe the design of ferrocene-functionalized reduced graphene oxide electrode and its electrocatalytic properties towards the determination of nitrite. Compared to a reduced graphene oxide electrode, the sensor exhibits enhanced electrocatalytic activity towards both oxidation and reduction of nitrite.
  相似文献   
4.
A novel ferrocene-functionalized reduced graphene oxide (rGO)-based electrode is proposed. It was fabricated by the drop casting of ferrocene-functionalized graphene onto polyester substrate as the working electrode integrated within screen-printed reference and counter electrodes. The ferrocene-functionalized rGO has been fully characterized using FTIR, XPS, contact angle measurements, SEM and TEM microscopy, and cyclic voltammetry. The XPS and EDX analysis showed the presence of Fe element related to the introduced ferrocene groups, which is confirmed by a clear CV signal at ca. 0.25 V vs. Ag/AgCl (0.1 KCl). Mediated redox catalysis of H2O2 and bio-functionalization with glucose oxidase for glucose detection were achieved by the bioelectrode providing a proof for potential biosensing applications.  相似文献   
5.
Rabti  Amal  Zayani  Riham  Meftah  Marwa  Salhi  Imed  Raouafi  Noureddine 《Mikrochimica acta》2020,187(11):1-24
Microchimica Acta - This review (with 106 references) summarizes the latest progress in the synthesis, properties and biomedical applications of gold nanotubes (AuNTs). Following an introduction...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号