首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
化学   10篇
数学   3篇
物理学   29篇
  2016年   1篇
  2012年   2篇
  2011年   2篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1993年   5篇
  1990年   1篇
  1987年   2篇
  1986年   2篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Using neutron reflectometry, the adsorption of diblock copolymers from a neutral polystyrene (PS) matrix is studied as a function of substrate type and non-adsorbing block degree of polymerization. The block copolymer is poly(deutero styrene)-block-poly(methyl methacrylate) and the substrates are silicon oxide, SiOx, and SiOx functionalized with (3-aminopropyl)triethoxysilane (APTES). We have determined the equilibrium volume fraction-depth profiles for such films, and compared them with volume fraction profiles generated by self-consistent mean-field (SCMF) theory and find good agreement between the experimental and theoretical data. SCMF calculations show that the segmental interaction energy between PS matrix chains and APTES is two orders of magnitude stronger than that between PS and SiOx.  相似文献   
6.
7.
8.
The local environment of unneutralized carboxylic acid groups in poly(ethylene‐ran‐methacrylic acid) (E/MAA) ionomers neutralized with monovalent (Li and Na) and divalent (Ca and Zn) ions has been investigated with Fourier transform infrared spectroscopy. These unneutralized acid groups interact with one another to form acid dimers, and they associate with existing neutralized complexes. At room temperature, no free acids can be detected for any system, not even for pure E/MAA. With the acid dimer peak (1700 cm?1) and a known unneutralized acid concentration, the concentration of acids associated with a neutralized complex can be determined. This concentration of associated acids increases with increasing neutralization, reaches a maximum below 50% neutralization, and then decreases toward zero near 80% neutralization. This behavior is perhaps due to the increased driving force for aggregation of the neutralization acids. Although Li, Na, and Ca contain similar concentrations of associated acids over the range of neutralizations, the Zn system contains far fewer associated acids (i.e., more acid dimers) at any particular neutralization level. These results are confirmed by an analysis of the absorbance in the neutralized region (1650–1500 cm?1). © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2833–2841, 2002  相似文献   
9.
Direct embedding of metal nanoparticles (NPs) into the surface of a polymer melt is observed by TEM and a new embedding mechanism proposed. Upon annealing above the glass transition temperature of polystyrene (PS), NPs (20 nm gold) are rapidly covered by a thin PS wetting layer, h* approximately 1.3-1.8 nm (i.e., about two or three monomers). Because it creates capillary pressure on a NP, this "universal" wetting layer is proposed to be responsible for NP embedding. The value of h* is independent of the molecular weight of PS and constant during the embedding process. The value of h* is found to be similar to the equilibrium wetting layer thickness of a polymer melt spreading on a metal substrate. Using a model that includes the spreading coefficient, long-range van der Waals interactions, and a chain-stretching penalty, h* is shown to be independent of the molecular weight of the polymer. Using this model and the measured value of h*, the interfacial energy between Au NP and PS is estimated to be 8.7 J/m2.  相似文献   
10.
Extensive new high-temperature, high-resolution FTIR emission spectroscopy measurements for the five common isotopomers of GeO are combined with previous diode laser and microwave measurements in combined isotopomer analyses. New Dunham expansion parameters and an accurate analytical potential energy function are determined for the ground X1Sigma+ state. Copyright 1999 Academic Press.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号