首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   1篇
  国内免费   1篇
化学   75篇
晶体学   5篇
力学   9篇
数学   4篇
物理学   14篇
  2021年   2篇
  2020年   5篇
  2015年   1篇
  2014年   2篇
  2012年   6篇
  2011年   3篇
  2010年   3篇
  2008年   7篇
  2007年   8篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   6篇
  2001年   6篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1996年   2篇
  1994年   4篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1988年   6篇
  1987年   3篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1977年   3篇
  1974年   1篇
  1973年   5篇
  1907年   2篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
1.
The miscibility of polyester/nitrocellulose blends was investigated by differential scanning calorimetry and Fourier-transform infrared (FTIR) spectroscopy. Two nitrocelluloses (NC) derived from wood and having different nitrogen contents (12.62 and 13.42%) were used. On the basis of the glass transition temperature criterion, poly(?-caprolactone) (PCL), poly(valerolactone), poly(ethylene adipate), and poly(butylene adipate) are miscible with nitrocellulose, whereas poly(α-methyl α-propyl β-propiolactone) and poly(α-methyl β-proiolactone) are immiscible. The Tg versus composition curves of PCL/NC blends do not follow a monotone function but exhibit a singular point at a critical PCL volume fraction of 0.51 for NC-1342 and 0.45 for NC-1262 in agreement with Kovacs' theory. A shift of 17 cm-1 of the carbonyl stretching band was observed with PCL/NC blends and is taken as evidence for hydrogen bonding interaction between the PCL carbonyl group and NC hydroxyl group. The frequency difference between the free hydroxyl absorbance and the absorbances of the hydrogen-bonded species was found to be 85 cm-1 in pure NC and 125 cm-1 in PCL/NC blends; it indicates that the average strength of this interaction is stronger than the corresponding self-associated hydrogen bonding in pure NC. The presence of a dipole-dipole interaction between the nitrate-ester groups of NC and the carbonyl groups of the polyesters is reported. The relative strength of the hydrogen bonding and dipole-dipole interactions is discussed and correlated with polymer miscibility.  相似文献   
2.
Below a critical thickness, of about 60 nm, the glass transition temperature of polystyrene (PS) films decreases with film thickness, as demonstrated using free‐standing films. A geometrical model is developed here describing this phenomenon in the case of ideal (Gaussian) chains. This model, which can be considered as an application of the free volume model, assumes that the decrease of the glass transition temperature from thick to ultrathin films is due to the modification of the interpenetration between neighboring chains. The theoretical curve deduced from the model is in excellent agreement with the PS experimental results, without using any adjustable parameters. From these results, it can be concluded that new chain motions, usually buried in bulk samples, are expressed by the presence of the surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 10–17, 2007  相似文献   
3.
β-(trichloromethyl)-β-propiolactone (CCl3-PL), β-(trifluoromethyl,methyl)-β-propiolactone (CF3, Me-PL) and β-(trifluoromethyl,ethyl)-β-propiolactone (CF3,Et-PL) have been obtained by the reaction of ketene with chloral, 1,1,1-trifluoroacetone and 1,1,1-trifluorobutanone, respectively. Chiral catalysis lead to optically active monomers. The enantiomeric excess of the lactones has been measured by 1H-NMR spectroscopy, in the presence of 2,2,2-trifluoro-1-(9-anthryl)ethanol or an europium chiral shift reagent. Polymerizations have been carried out in bulk or in toluene, at 60°C or 80°C, using mainly organometallic initiators. The Polymers become insoluble and crystalline at enantiomeric excesses over 80% for CCl3-PL and 70% for CF3,Me-PL. Melting temperatures were recorded from 238 to 268°C for poly(CCl3-PL) and from 78 to 100°C for poly(CF3,Me-PL), depending upon the molecular weight and the enantiomeric excess. The 13C-NMR specroscopy of poly(CCL3-PL) indicates that the polymerization of the corresponding lactone leads to polymers of increasing degrees of isotacticity with the enantiomeric excess of the monomer.  相似文献   
4.
Pristine and WO3 decorated TiO2 nanorods (NRs) were synthesised to investigate n-n-type heterojunction gas sensing properties. TiO2 NRs were fabricated via hydrothermal method on fluorine-doped tin oxide coated glass (FTO) substrates. Then, tungsten was sputtered on the TiO2 NRs and thermally oxidised to obtain WO3 nanoparticles. The heterostructure was characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy. Fabricated sensor devices were exposed to VOCs such as toluene, xylene, acetone and ethanol, and humidity at different operation temperatures. Experimental results demonstrated that the heterostructure has better sensor response toward ethanol at 200 °C. Enhanced sensing properties are attributed to the heterojunction formation by decorating TiO2 NRs with WO3.  相似文献   
5.
In this study, the catalytic activity and stability of flowerlike hybrid horseradish peroxidase (HRP) nanobiocatalyst (HRP-Cu 2+ ) obtained from Cu 2+ ions and HRP enzyme in the polymerization reaction of guaiacol were analyzed. We demonstrated that HRP-Cu 2+ and hydrogen peroxide (H 2 O 2 ) initiator showed significantly increased catalytic activity and stability on the polymerization of guaiacol compared to that of free HRP enzyme. Poly(guaiacol) was observed with quite high yields (88%) and molecular weights (38,000 g/mol) under pH 7.4 phosphate-buffered saline (PBS) conditions at 60 °C with 5 weight% of HRP-Cu 2+ loading. HRP-Cu 2+ also shows very high thermal stability and works even at 70 °C reaction temperature; free HRP enzyme denatures at that temperature. Furthermore, HRP-Cu 2+ provided considerable repeated use and showed some degree of catalytic activity, even after the fourth recycle, in the polymerization of guaiacol.  相似文献   
6.
The volatile components of essential oil (EO), SPME, and SPME of solvent extracts ( n -hexane, methanol, and water) obtained from fresh Serapias orientalis subsp. orientalis ( Soo ) were analyzed by GC-FID/MS. EO of Soo gave 11 compounds in the percentage of 99.97%; capronaldehyde (37.01%), 2-( E )-hexenal (23.19%), and n -nonanal (19.05%) were found to be major constituents. SPME GC-FID/MS analyses of fresh plant and solvent extracts of Soo revealed 7, 12, 7, and 4 compounds within the range of 99.7% to 99.9%. Limonene (76.5%, 41.7%, and 61.3%) was the major compound in SPMEs of the n -hexane and methanol extracts. α -Methoxy- p -cresol (52.9%) was the main component in its water extract. The antimicrobial activity of EO and the solvent extracts of Soo were screened against 9microorganisms. EO showed the best activity against Mycobacterium smegmatis , with 79.5 µg/mL MIC value. The n -hexane, methanol, and water extracts were the most active against the Staphylococcus aureus within the range of 81.25–125.0 µg/mL (MIC). IC 50 values for the lipase enzyme inhibitory activity of EO and solvent extracts ( n -hexane, methanol, and water) were determined to be 59.87 µg/mL, 64.03 µg/mL, 101.91 µg/mL, and 121.24 µg/mL, respectively.  相似文献   
7.
A general equation describing the small-angle Hv light-scattering intensity for a system of N undeformed spherulites located at random within the sample and taking into account the truncation and interference effects is given. Scattering contour plots or radial scans are reported for various arrangements of the N spherulites. The results show that the interference effect may explain the speckled appearance of the experimental patterns. Moreover, the interference and truncation effects (for the special cases where truncation is considered here) do not seem to shift the position of the maximum scattering angle of the cloverleaf pattern as calculated from the single spherulite theory. Finally, the calculations show that the truncation effect increases the relative intensity of the pattern at large and low scattering angles and at azimuthal angles 0 and 90°C, as compared with the intensity at the position of maximum scattering angle.  相似文献   
8.
Water-in-oil emulsions stabilized by polymeric surfactants are robust, but the reasons for their stability are poorly understood. We studied oil films stabilized by a comb–graft copolymer having a poly(siloxane) backbone and poly(ethylene oxide)/poly (propylene oxide) and C16 grafts (Abil EM-90) with a total number-average molecular weight of 62,000. Electric fields imposed in the aqueous phases on either side of the oil films were used to induce rapid rupture, and the response of the film was monitored using optical interference and electrical conductance measurements. Film thickness values ranged between 30 and 50 nm and rupture at field strength values between 2 × 107 and 5 × 107 V/m. Unexpectedly, in some cases, stable pores were formed and the films became electrically conductive. Often the pores persisted for more than 20 min after the voltage had been removed. Since the current was independent of film area, very few pores are involved in conduction. This behavior is similar to that found in lipid films; however, the persistence time is greater for polymer-stabilized films. Because the films are thick, it is possible that pores are formed by multimolecular self-assembly as with pore-forming proteins. Polymer purification also influenced film stability. Received: 4 February 1999 Accepted: 21 May 1999  相似文献   
9.
Rheology of oil-in-water emulsions   总被引:4,自引:0,他引:4  
The effect of interfacial tension on the steady-flow and dynamic viscoelastic behavior of emulsions are studied experimentally. At very low inter-facial tensions and low volume fractions, the viscosity decreases with increasing shear rate and becomes constant at high shear rates. The high-shear-rate Newtonian viscosity is not affected by interfacial tension, but the transition from pseudoplastic to Newtonian flow shifts to lower shear rates as the interfacial tension decreases. At an interfacial tension of 5 × 10–3 Nm–1, the viscosity decreases, passes through a minimum, and then increases as the shear rate is increased. The dilatant behavior may be attributed to elastic responses of interfaces during collision of drops. At high volume fractions, the emulsions show remarkable elasticity resulting from the interfacial energy associated with deformation of liquid films. The modulus and viscosity are proportional to interfacial tension and inversely proportional to drop size.  相似文献   
10.
Response of an elastic Bingham fluid to oscillatory shear   总被引:1,自引:0,他引:1  
The response of an elastic Bingham fluid to oscillatory strain has been modeled and compared with experiments on an oil-in-water emulsion. The newly developed model includes elastic solid deformation below the yield stress (or strain), and Newtonian flow above the yield stress. In sinusoidal oscillatory deformations at low strain amplitudes the stress response is sinusoidal and in phase with the strain. At large strain amplitudes, above the yield stress, the stress response is non-linear and is out of phase with strain because of the storage and release of elastic recoverable strain. In oscillatory deformation between parallel disks the non-uniform strain in the radial direction causes the location of the yield surface to move in-and-out during each oscillation. The radial location of the yield surface is calculated and the resulting torque on the stationary disk is determined. Torque waveforms are calculated for various strains and frequencies and compared to experiments on a model oil-in-water emulsion. Model parameters are evaluated independently: the elastic modulus of the emulsion is determined from data at low strains, the yield strain is determined from the phase shift between torque and strain, and the Bingham viscosity is determined from the frequency dependence of the torque at high strains. Using these parameters the torque waveforms are predicted quantitatively for all strains and frequencies. In accord with the model predictions the phase shift is found to depend on strain but to be independent of frequency.Notation A plate strain amplitude (parallel plates) - A R plate strain amplitude at disk edge (parallel disks) - G elastic modulus - m torque (parallel disks) - M normalized torque (parallel disks) = 2m/R 30 - N ratio of viscous to elastic stresses (parallel plates) =µ A/ 0 ratio of viscous to elastic stresses (parallel disks) =µ A R/0 - r normalized radial position (parallel disks) =r/R - r radial position (parallel disks) - R disk radius (parallel disks) - t normalized time = t — /2 - t time - E elastic strain - P plate strain (displacement of top plate or disk divided by distance between plates or disks) - PR plate strain at disk edge (parallel disks) - 0 yield strain - E normalized elastic strain = E/0 - P normalized plate strain = P/0 - PR normalized plate strain at disk edge (parallel disks) = PR/0 - 0 normalized plate strain amplitude (parallel plates) =A/ 0 — normalized plate strain amplitude at disk edge (parallel disks) =A R/0 - phase shift between P andT (parallel plates) — phase shift between PR andM (parallel disks) - µ Bingham viscosity - stress - 0 yield stress - T normalized stress =/ 0 - frequency  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号