首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   2篇
化学   141篇
晶体学   5篇
力学   7篇
数学   21篇
物理学   18篇
  2022年   1篇
  2021年   7篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   4篇
  2016年   6篇
  2015年   4篇
  2014年   5篇
  2013年   17篇
  2012年   4篇
  2011年   7篇
  2010年   7篇
  2009年   4篇
  2008年   11篇
  2007年   9篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   7篇
  2002年   7篇
  2001年   2篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1982年   3篇
  1981年   7篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1967年   2篇
  1961年   1篇
排序方式: 共有192条查询结果,搜索用时 0 毫秒
1.
From rehydration experiments the hydrates Ba(OH)2 · 8 H2O, Ba(OH)2 · 3 H2O β-Ba(OH)2, · 1 H2O, and γ-Ba(OH)2 · 1 H2O have been found in the system Ba(OH)2-H2O. Thermoanalytical measurements (DTA, TG, DTG, high temperature X-ray diffraction, high temperature Raman scattering) on these hydrates are reported. Thermal decomposition of Ba(OH)2 · 8 H2O and Ba(OH)2 · 3 H2O always results in the formation of β-Ba(OH)2 · 1 H2O, the stable form of the monohydrates at ambient temperature. Dehydration of β- and γ-Ba(OH)2 · 1 H2O, both of which form anhydrous β-Ba(OH)2 as the first product of decomposition, starts at 105 and 115°C, respectively. Single crystals of Ba(OH)2 · 3 H2O and γ-Ba(OH)2 · 1 H2O were prepared from Ba(OH)2 · 8 H2O meltings and from ethanolic solutions of Ba(OH)2 , respectively. The crystal data are: Ba(OH)2 · 3 H2O (orthorhombic, Pnma): a = 764.0(2), b = 1140,3(5), c = 596.5(1) pm, Z = 4; γ-Ba(OH)2 · 1 H2O (monoclinic, P21/m or P21): a = 704.9(2), b = 418.4(1), c = 633.3(1) pm, β = 111.45(2)°, Z = 2.  相似文献   
2.
[structures: see text] Both (2S,5R,6R)- and (2S,5R,6S)-6-hydroxy-8-(1-decynyl)benzolactam-V8 were designed and synthesized as PKC modulators. Biological assays reveal the (6R)-ligand to be 20-fold more potent than its (6S)-counterpart in binding to PKC alpha.  相似文献   
3.
The transferability of atomic and functional group properties is an implicit concept in chemistry. The work presented here describes the use of Transferable Atom Equivalents (TAE) to represent molecular electrostatic potential fields through the use of integrated atomic multipole moments that are associated with each TAE atom type used in the reconstruction. TAE molecular surface distributions of electrostatic potentials are compared with analytical ab initio and empirical (Gasteiger) partial charge reference models for several conformations of test peptides. Surface electrostatic potential distributions computed using TAE multipole representations were found to converge at the octopole level, with incremental improvement observed when hexadecapoles were included. Molecular electrostatic potential fields that were produced using the TAE method were observed to be responsive to conformational changes and to compare well with ab initio reference distributions. Generation of TAE atom types and their associated multipoles does not involve fitting to sample electrostatic potential fields, but rather utilizes integrated AIM atomic electron density distributions within representative chemical environments. The RECON program was used for TAE reconstruction. RECON is capable of processing 5,000 drug-sized molecules or 25 proteins per minute per 1.7 GHz P4 Linux processor.  相似文献   
4.
α-Methylstyrene (MS) and isobutyl vinyl ether (VE) readily polymerize, styrene (S) polymerizes to a small extent, and isobutylene (IB), butadiene (BD), and isoprene (IP) fail to polymerize in the presence of catalytic amounts of AlCl3 when propionitrile, ethyl propionate, and methyl isobutyrate are used as reaction media. MS polymerizes readily and S polymerizes with difficulty in the presence of AlCl3 to yield homopolymers when acrylonitrile (AN) is present and copolymers with ethyl acrylate (EA) and methyl methacrylate (MMA). VE readily homopolymerizes, while IB, BD, and IP fail to polymerize in the presence of AlCl3 and the acrylic monomers. VE readily homopolymerizes, S and MS polymerize to a very small extent, and IB, BD, and IP do not polymerize in the presence of ethylaluminum sesquichloride (EASC) in polar solvents. VE readily homopolymerizes in the presence of EASC and the acrylic monomers. MS polymerizes to a small extent in the presence of EASC and the acrylic monomers to yield equimolar copolymers with EA and MMA and a mixture of cationic homopolymer and equimolar copolymer with AN. S yields equimolar copolymers in low yield in the presence of EASC and the acrylic monomers. IB, BD, and IP in the presence of EASC do not polymerize to any significant extent when EA is present, form AN-rich copolymers and yield poly(methyl methacrylate) in the presence of MMA. A revised mechanism is presented for the formation of cationic, radical, random, and alternating copolymers as well as alternating copolymer graft copolymers in the copolymerization of donor and acceptor monomers.  相似文献   
5.
Fluorination of low-density polyethylene, polyacetylene, and poly(vinyl alcohol) was carried out using SF6 gas under electric discharge. The polymers were partially fluorinated and the extent of fluorination was more in the case of poly (vinyl alcohol) than the other two polymers. The fluorinated polymers were characterized by elemental analysis (Fluorine), IR, and x-ray diffraction. Optical transparency of the films was also measured. The fluorinated polymers show better solvent resistance and decreased transparency than the virgin polymer. © 1994 John Wiley & Sons, Inc.  相似文献   
6.
The dynamics of Jahn–Teller systems has recently been discussed in terms of generalized electronic charge and current densities in nuclear-coordinate space. The introduction of the electronic phase as a function of both electronic and nuclear coordinates, in addition to the electronic density, was a crucial component of this formulation. Here, a densitybased treatment of Born couplings is derived from first-principles quantum mechanics beyond the Born–Oppenheimer approximation. Because of the degenerate electronic configuration of a Jahn–Teller molecule, there are an infinite number of ways in which the charge distribution can be oriented for the same energy, leading to a vanishing bond hardness for the molecule in the symmetric nuclear configuration. Further, the moving nuclear framework serves as the perturbation necessary to define the orientation of the charge density, leading to unhindered rotation of the charge cloud. This leads to the dynamical Jahn–Teller problem, namely, the coupling of electronic and nuclear motions through the Born coupling terms. Applications to superconductivity theory are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   
7.
Synchrotron X-ray data have been collected to 1.4 Å resolution at the NE-CAT beam-line at the Advanced Photon Source from fibers of cellulose Iβ and regenerated cellulose II (Fortisan) at ambient temperature and at 100 K in order to understand the effects of low temperature on cellulose more thoroughly. Crystal structures have been determined at each temperature. The unit cell of regenerated cellulose II contracted, with decreasing temperature, by 0.25%, 0.22% and 0.1% along the a, b, and c axes, respectively, whereas that of cellulose Iβ contracted only in the direction of the a axis, by 0.9%. The value of 4.6×10?5 K?1 for the thermal expansion coefficient of cellulose Iβ in the a axis direction can be explained by simple harmonic molecular oscillations and the lack of hydrogen-bonding in this direction. The molecular conformations of each allomorph are essential unchanged by cooling to 100 K. The room temperature crystal structure of regenerated cellulose II is essentially identical to the crystal structure of mercerized cellulose II.  相似文献   
8.
Polycondensation of the diacid chloride of 2-(3-carboxy vinyl)phenyl-1,3-dioxoisoindoline-5-carboxylic acid with m-phenylenediamine and the diacid chloride of 2-(4-carboxy phenyl)-1,3-dioxoisoindoline-5-carboxylic acid with 1,5-bis(3-aminophenyl)1,4-pentadien-3-one was carried out in polar solvents to produce new unsaturated polyamide–imides. The solution and the thermal, electrical, and a few other properties of the polymers were studies. The polymers were soluble in highly polar solvents. The solubility parameter of the polymers was calculated from the Small's group contribution. The polymers were fairly thermostable and underwent crosslinking creaction when heated, preferably in the presence of a suitable catalyst. The crosslinked polymers were in soluble even in highly polar solvents and possessed higher thermal stability. The swelling behavior of the polymers was studied and the molecular weight between two consecutive crosslinks was determined. X-ray diffraction and the dielectric properties of the polymers and their crosslinked products were also studied.  相似文献   
9.
A highly sensitive spectrophotometric method for the determination of nitrite in water and soil has been developed. The reaction of nitrite with acidified potassium iodide to liberate iodine which oxidizes leuco‐crystal violet (LCV) to form crystal violet having absorption maxima at 590 nm forms the bases of this method. In aqueous medium the system obeys Beer's law in the range of 0.1 to 1.0 μg per 25 mL (0.004–0.04 ppm), while in an extractive system the range is 0.025–0.25 μg in 100 mL (0.00025–0.0025 ppm). The molar absorptivity and Sandell's sensitivity were found to be 1.54 × 106 1 mol?1 cm?1 and 44 pg cm?2, respectively.  相似文献   
10.
A series of indolylidinepyrazolones were synthesized using a simple, green, and effective route and evaluated as anti-bacterial agents. The compounds were further studied via structure-guided docking study. One of the compounds exhibiting H-bonding interactions with conserved residue Arg144 turned out to be the most potent compound of the series. The minimum inhibitory concentration values ranged from 50 to 25 μg/mL against Staphylococcus aureus in their anti microbial evaluation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号