首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   10篇
化学   148篇
晶体学   2篇
力学   2篇
数学   12篇
物理学   56篇
  2024年   2篇
  2023年   1篇
  2022年   8篇
  2021年   5篇
  2020年   5篇
  2019年   9篇
  2018年   7篇
  2017年   6篇
  2016年   12篇
  2015年   10篇
  2014年   13篇
  2013年   19篇
  2012年   17篇
  2011年   17篇
  2010年   7篇
  2009年   7篇
  2008年   12篇
  2007年   8篇
  2006年   3篇
  2005年   6篇
  2004年   7篇
  2003年   6篇
  2002年   2篇
  2001年   2篇
  2000年   6篇
  1998年   3篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
1.
The rearrangement of vinylidene to acetylene has been studied in detail by the density functional method, using Becke's three‐parameter exchange functional and the gradient‐corrected functional of Lee, Yang, and Parr. The rearrangement of the anion, as well as that of fluoro‐substituted systems, has also been investigated, in order to determine the effect of fluorine substitution on the activation barrier to the 1,2‐hydrogen shift, as well as the relative migratory aptitudes of hydrogen and fluorine. Natural bond orbital analysis is invoked to gain insight into the mechanisms of the rearrangements. Basis size effects are also discussed, particularly in relation to anionic systems. The need to include diffuse functions in geometry optimizations of anionic systems is reinforced by the present calculations. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   
2.
Chiral molecules that self-assemble to form chiral supramolecular structures exhibit interesting structural features reminiscent of tertiary and quaternary structures of proteins and have applications in catalysis and nonlinear optics. Often, these structures are hierarchical, with their chiral structure difficult to interpret on the molecular scale. In this communication, we observe chiral assembling molecules that form well-defined helices with a pitch of 28 nm. We observe the behavior in both R- and S-enantiomers of the molecule, forming mirror image nanostructures. The molecular chirality is determined by the dimethyloctyl alkyl coil of the molecule and is located more than 4 nm from the hydrogen-bonding segment. The nanostructures observed are not hierarchical, which could be a result of the significant separation between the stereocenter and hydrogen-bonding dendron. The subtle structural modification at the periphery of the molecule biases the supramolecular assembly, which is driven primarily by strong hydrogen-bonding and pi-pi stacking interactions.  相似文献   
3.
Kinked-stepped, high Miller index surfaces of metal crystals are chiral and, therefore, exhibit enantiospecific properties. Previous temperature-programmed desorption (TPD) spectra have shown that the desorption energies of R-3-methylcyclohexanone (R-3-MCHO) on the chiral Cu(643)(R) and Cu(643)(S) surfaces are enantiospecific (J. Am. Chem. Soc. 2002, 124, 2384). Here, a comparison of the TPD spectra from Cu(111), Cu(221), Cu(533), Cu(653)(R&S), and Cu(643)(R&S) surfaces reveals that the enantiospecific desorption occurs from the chiral kink sites on the Cu(643) surfaces. Titration of the chiral kink sites with I atoms confirms this assignment of desorption features in the TPD spectra. Finally, the enantiospecific difference in the desorption energies of R- and S-3-MCHO has been used as the basis for demonstration of an enantioselective, kinetic separation of racemic 3-MCHO into its purified components during adsorption and desorption on the Cu(643)(R&S) surfaces.  相似文献   
4.
A highly selective and sensitive electrochemical sensor has been developed by modification of a glassy carbon electrode (GCE) with graphene (GRP) for quantification of Rizatriptan. The significant increase of the peak current and the improvement of the oxidation peak potential indicate that the electrochemical sensor facilitates the electron transfer of Rizatriptan. The oxidation peak current was proportional to the Rizatriptan concentration in the range from 100 to 600 µg/mL with detection (LOD) and quantification limit (LOQ) of 36.52 and 121.73 µg/mL, respectively. The developed method was successfully employed for quantification of Rizatriptan in pharmaceutical formulations. The sensor shows great promise for simple, sensitive and quantitative detection of Rizatriptan.  相似文献   
5.
In the present paper, self-focusing phenomenon occurring as a result of non-linear interaction of intense laser beam with thermal conduction-loss predominant plasmas is studied by following both approaches viz. paraxial theory approach and moment theory approach. Non-linear differential equations for the beam width parameters of laser beam have been set up and solved numerically in both cases to study the variation of beam width parameters with normalized distance of propagation. Effects of laser intensity as well as plasma density on the beam width parameters have also been analyzed. It is observed from the analysis that in case of moment theory approach, strong self-focusing of laser beam is observed as compared to paraxial theory approach.  相似文献   
6.
High-rate and high-density gas separation adsorbents used in vacuum pressure swing adsorption (VPSA) processes are described. Agglomerated zeolite Li–LSX compositions made using colloidal silica binding agents and having improved nitrogen pore diffusivity compared to like compositions prepared with traditional clay binders, are also described. Preparation methods for the colloidal silica-bound adsorbents are described together with their characterization by mercury (Hg) porosimetry, scanning electron microscopy (SEM) and low dead-volume breakthrough testing, from which the pore diffusivity is obtained. In this article, we show how the location and dispersion of the colloidal silica binding agent within the agglomerated zeolite particle yields pore-architectures that resemble “state-of-the-art” binderless adsorbents. In addition, we use VPSA process simulations to show that the best process performance is achieved by the combination of high-rate and high-density adsorbent properties.  相似文献   
7.
Thermodynamic properties of Dysprosium rhodite (DyRhO3) are measured in the temperature range from 900 to 1,300 K using a solid-state electrochemical cell incorporating yttria-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of DyRhO3 with O-type perovskite structure from its components binary oxides, Dysprosia with C-rare earth structure and β-Rh2O3 with orthorhombic structure, can be represented by the equation: $$ {{{\varDelta G_{{f\left( {ox} \right)}}^o\left( {\pm 182} \right)}} \left/ {{{\mathrm{J} ~ \mathrm{mo}}{{\mathrm{l}}^{{ - 1}}}}} \right.} = - 52710 + 3.821\left( {{{T} \left/ {\mathrm{K}} \right.}} \right). $$ By using the thermodynamic data for DyRhO3 from experiment and auxiliary data for other phases from the literature, the phase relations in the system Dy-Rh-O are computed. Thermodynamic data for intermetallic phases in the binary system Dy-Rh, required for constructing the chemical potential diagrams, are evaluated using calorimetric data available in the literature for three intermetallics and Miedema’s model, consistent with the phase diagram. The results are presented in the form of Gibbs triangle, oxygen potential–composition diagram, and three-dimensional chemical potential diagram at 1,273 K. Temperature–composition diagrams at constant oxygen partial pressures are also developed. The decomposition temperature of DyRhO3 is 1,732 (±2.5) K in pure oxygen and 1,624 (±2.5) K and in air at standard pressure.  相似文献   
8.
Journal of Thermal Analysis and Calorimetry - Phthalonitrile (PN) resins are high-temperature-resistant thermosetting polymers which find applications in military as well as aerospace owing to...  相似文献   
9.
10.
A lossy mode resonance (LMR)-supported fiber optic sensor in which a uniform fiber core is placed among two identical tapered regions, is investigated numerically. Indium tin oxide (ITO) and aluminum-doped zinc oxide (AZO) are considered as LMR active materials used to excite several lossy modes and gold and silver are used as surface plasmon resonance (SPR) active materials. In this probe design, a central uniform core coated with ITO/AZO is the active sensing region, whereas tapered regions are meant for bringing the incident angle close to the critical angle. The sensitivity of the present fiber optic bio-sensor is evaluated for first two LMRs utilizing both ITO and AZO separately, along with its variation with the taper ratio (TR). For ITO, the maximum sensitivity values are observed to be 18.425 μm RIU−1 (refractive index unit) and 0.825 μm RIU−1, corresponding to the first and second LMRs, respectively, at a TR of 1.6 and for AZO, equivalent values are 0.79 μm RIU−1 and 0.35 μm RIU−1, respectively, at a TR of 2.0. The results illustrate that the first LMR is more sensitive than the second LMR and the ITO-coated probe possesses greater sensitivity than the AZO-coated probe for both LMRs. Similarly, for the fiber optic SPR sensor, the maximum value of sensitivity is 5.6425 μm RIU−1, in the case of gold and 5.0615 μm RIU−1 in the case of silver, at a TR of 1.6. Hence, the result shows that the sensor with the present fiber optic probe design has around a 3-fold enhancement in sensitivity compared with conventional SPR sensors. This study will have applications in many sensing schemes where the requirement of large sensitivity is vital.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号