首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
化学   22篇
力学   5篇
数学   8篇
物理学   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2014年   3篇
  2012年   3篇
  2011年   7篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2001年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
1.
Electrokinetic transport of an uncharged nonconducting microsized liquid droplet in a charged hydrogel medium is studied. Dielectric polarization of the liquid drop under the action of an externally imposed electric field induces a non-homogeneous charge density at the droplet surface. The interactions of the induced surface charge of the droplet with the immobile charges of the hydrogel medium generates an electric force to the droplet, which actuates the drop through the charged hydrogel medium. A numerical study based on the first principle of electrokinetics is adopted. Dependence of the droplet velocity on its dielectric permittivity, bulk ionic concentration, and immobile charge density of the gel is analyzed. The surface conduction is significant in presence of charged gel, which creates a concentration polarization. The impact of the counterion saturation in the Debye layer due to the dielectric decrement of the medium is addressed. The modified Nernst–Planck equation for ion transport and the Poisson equation for the electric field is considered to take into account the dielectric polarization. A quadrupolar vortex around the uncharged droplet is observed when the gel medium is considered to be uncharged, which is similar to the induced charge electroosmosis around an uncharged dielectric colloid in free-solution. We find that the induced charge electrokinetic mechanism creates a strong recirculation of liquid within the droplet and the translational velocity of the droplet strongly depends on its size for the dielectric droplet embedded in a charged gel medium.  相似文献   
2.
The present investigation deals with a mathematical model representing the mass transfer to blood streaming through the arteries under stenotic condition. The mass transport refers to the movement of atherogenic molecules, that is, blood-borne components, such as oxygen and low-density lipoproteins from flowing blood into the arterial walls or vice versa. The blood flowing through the artery is treated to be Newtonian and the arterial wall is considered to be rigid having differently shaped stenoses in its lumen arising from various types of abnormal growth or plaque formation. The nonlinear unsteady pulsatile flow phenomenon unaffected by concentration-field of the macromolecules is governed by the Navier–Stokes equations together with the equation of continuity while that of mass transfer is controlled by the convection-diffusion equation. The governing equations of motion accompanied by appropriate choice of the boundary conditions are solved numerically by MAC(Marker and Cell) method and checked numerical stability with desired degree of accuracy. The quantitative analysis carried out finally includes the respective profiles of the flow-field and concentration along with their distributions over the entire arterial segment as well. The key factors like the wall shear stress and Sherwood number are also examined for further qualitative insight into the flow and mass transport phenomena through arterial stenosis. The present results show quite consistency with several existing results in the literature which substantiate sufficiently to validate the applicability of the model under consideration.  相似文献   
3.
Flavonoids comprise a large group of structurally diverse polyphenolic compounds of plant origin and are abundantly found in human diet such as fruits, vegetables, grains, tea, dairy products, red wine, etc. Major classes of flavonoids include flavonols, flavones, flavanones, flavanols, anthocyanidins, isoflavones, and chalcones. Owing to their potential health benefits and medicinal significance, flavonoids are now considered as an indispensable component in a variety of medicinal, pharmaceutical, nutraceutical, and cosmetic preparations. Moreover, flavonoids play a significant role in preventing cardiovascular diseases (CVDs), which could be mainly due to their antioxidant, antiatherogenic, and antithrombotic effects. Epidemiological and in vitro/in vivo evidence of antioxidant effects supports the cardioprotective function of dietary flavonoids. Further, the inhibition of LDL oxidation and platelet aggregation following regular consumption of food containing flavonoids and moderate consumption of red wine might protect against atherosclerosis and thrombosis. One study suggests that daily intake of 100 mg of flavonoids through the diet may reduce the risk of developing morbidity and mortality due to coronary heart disease (CHD) by approximately 10%. This review summarizes dietary flavonoids with their sources and potential health implications in CVDs including various redox-active cardioprotective (molecular) mechanisms with antioxidant effects. Pharmacokinetic (oral bioavailability, drug metabolism), toxicological, and therapeutic aspects of dietary flavonoids are also addressed herein with future directions for the discovery and development of useful drug candidates/therapeutic molecules.  相似文献   
4.
This paper deals with an iterative algorithm with the help of averaged mappings for the common solution of a fixed point problem of a finite collection of k-strictly pseudocontractive non-self mappings and a system of variational inequality problems in the setting of a real Hilbert space. Under some suitable conditions, the sequence generated by the proposed algorithm converges strongly to the common solution of the above said problems. Also, a numerical example is given to establish the superiority of the proposed algorithm over some existing methods.  相似文献   
5.
Journal of Thermal Analysis and Calorimetry - Numerical simulation of a non-linear mathematical model governing an arbitrarily oblique slip flow of a nanofluid, with suspended carbon nanotubes in...  相似文献   
6.
Shim J  Dutta P  Ivory CF 《Electrophoresis》2007,28(4):572-586
A 2-D finite-volume model is developed to simulate nonlinear IEF in complex microgeometries. This mathematical model is formulated based on the mass conservation and ionic dissociation relations of amphoteric macromolecules, charge conservation, and the electroneutrality condition. Based on the 2-D model, three different separation cases are studied: an IPG in a planar channel, an ampholyte-based pH gradient in a planar channel, and an ampholyte-based pH gradient in a contraction-expansion channel. In the IPG case, cacodylic acid (pK(1) = 6.21) and Tris (pK(1) = 8.3) are used as the acid and base, respectively, to validate the 2-D IEF model. In the ampholyte-based pH gradient cases, IEF is performed in the pH range, 6.21-8.3 using 10 ampholytes in the planar channel and 20 ampholytes in the contraction-expansion channel. The numerical results reveal different focusing efficiencies and resolution in the narrow and wide sections of the contraction-expansion channel. To explain this, the expressions for separation resolution and peak concentrations of separands in the contraction-expansion channel are presented in terms of the channel shape factor. In a 2-D planar channel, a focused band remains straight all the time. However, in a contraction-expansion channel, initially straight bands take on a crescent profile as they pass through the trapezoidal sections joining the contraction and expansion sections.  相似文献   
7.
A long‐standing controversy concerning the heat of formation of methylenimine has been addressed by means of the W2 (Weizmann‐2) thermochemical approach. Our best calculated values, ΔH°f,298(CH2NH) = 21.1±0.5 kcal/mol and ΔH°f,298(CH2NH2+) = 179.4±0.5 kcal/mol, are in good agreement with the most recent measurements but carry a much smaller uncertainty. As a byproduct, we obtain the first‐ever accurate anharmonic force field for methylenimine: upon consideration of the appropriate resonances, the experimental gas‐phase band origins are all reproduced to better than 10 cm?1. Consideration of the difference between a fully anharmonic zero‐point vibrational energy and B3LYP/cc‐pVTZ harmonic frequencies scaled by 0.985 suggests that the calculation of anharmonic zero‐point vibrational energies can generally be dispensed with, even in benchmark work, for rigid molecules. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1297–1305, 2001  相似文献   
8.
Summary Zr(acac)4 undergoes ligand exchanges with various tri- and tetradentate Schiff base ligands, forming compounds of the Zr(L)2 type (H2L=tetradentate H2Sal2en, H2Sal2pn, H2Sal2 o-phen and the tridentate H2SAP) and Zr(acac)2L (H2L=H2SAN. H2SAE). Upon reaction with a combination of tri- and tetradentate ligands, Zr(acac)4 yields Zr(L)(L) complexes (H2L=H2Sal2en or H2Sal2 o-phen; H2L=H2SAN, H2SAE, or H2SAP), which have been characterised by analytical data, m.ps, electrical conductivities, i.r. and n.m.r (1H and13C) spectra, they have a coordination number of 6, 7 or 8.  相似文献   
9.
10.
Of concern in the paper is an analytical study of pulsatile blood flow in an irregular stenosed arterial segment through a mathematical model. The model is two-dimensional and axisymmetric with an outline of the stenosis obtained from a three-dimensional casting of a mildly stenosed artery [L. Back, Y. Cho, D. Crawford, R. Cuffel, Effect of mild atherosclerosis on flow resistance in a coronary artery casting of man, J. Biomech. Eng. 106 (1984) 48–53]. The combined influence of an asymmetric shape and surface irregularities of the constriction has been explored in a computational study of blood flow through arterial stenosis with 48% areal occlusion. The moving wall of the artery is included to be anisotropic, linear, viscoelastic, incompressible circular cylindrical membrane shell. The effect of the surrounding connective tissues on the motion of the arterial wall is also paid due attention. Results are also obtained for a smooth stenosis model and also for a stenosis model representative by the cosine curve. An extensive quantitative analysis has been performed in non-uniform non-staggered grids through numerical computations for the effect of surface irregularities on the flow velocity, the flux, the resistive impedance and on the wall shear stress through their graphical representations so as to validate the applicability of such an improved mathematical model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号