首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   7篇
  国内免费   3篇
化学   115篇
力学   2篇
数学   6篇
物理学   24篇
  2024年   1篇
  2023年   2篇
  2022年   7篇
  2021年   6篇
  2020年   5篇
  2019年   7篇
  2018年   1篇
  2016年   7篇
  2015年   9篇
  2014年   9篇
  2013年   11篇
  2012年   6篇
  2011年   8篇
  2010年   5篇
  2009年   4篇
  2008年   15篇
  2007年   13篇
  2006年   5篇
  2005年   4篇
  2004年   7篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1968年   1篇
排序方式: 共有147条查询结果,搜索用时 11 毫秒
1.
The dielectric properties of coordination polymers has been a topic of recent interest, but the role of different functional groups on the dielectric properties of these polymers has not yet been fully addressed. Herein, the effects of electron-donating (R=NH2) and electron-withdrawing (R=NO2) groups on the dielectric behavior of such materials were investigated for two thermally stable and guest-free Zn-based coordination polymers, [Zn(L1)(L2)]n ( 1 ) and [Zn(L1)(L3)]n ( 2 ) [L1=2-(2-pyridyl) benzimidazole (Pbim), L2=5-aminoisophthalate (Aip), and L3=5-nitroisophthalate (Nip)]. The results of dielectric studies of 1 revealed that it possesses a high dielectric constant (κ=65.5 at 1 kHz), while compound 2 displayed an even higher dielectric constant (κ=110.3 at 1 kHz). The electron donating and withdrawing effects of the NH2 and NO2 substituents induce changes in the polarity of the polymers, which is due to the inductive effect from the aryl ring for both NO2 and NH2. Theoretical results from density functional theory (DFT) calculations, which also support the experimental findings, show that both compounds have a distinct electronic behavior with diverse wide bandgaps. The significance of the current work is to provide information about the structure-dielectric property relationships. So, this study promises to pave the way for further research on the effects of different functional groups on coordination polymers on their dielectric properties.  相似文献   
2.
Research on Chemical Intermediates - A series of quinoxaline derivatives were efficiently synthesized by convenient and simple procedure in excellent yields using 1 wt.% of titanium silicate (TS-1)...  相似文献   
3.
A rapid and accurate HPLC method has been developed for simultaneous determination of pioglitazone and glimepiride. Chromatographic separation of the two pharmaceuticals was performed on a Cosmosil C18 column (150 mm × 4.6 mm, 5 m) with a 45:35:20 (v/v) mixture of 0.01 m triammonium citrate (pH adjusted to 6.95 with orthophosphoric acid), acetonitrile, and methanol as mobile phase, at a flow rate of 1.0 mL min–1, and detection at 228 nm. Separation was complete in less than 10 min. The method was validated for linearity, accuracy, precision, limit of quantitation, and robustness [1, 2]. Linearity, accuracy, and precision were found to be acceptable over the ranges 2.50–30.00 g mL–1 for pioglitazone and 0.10–10.00 g mL–1 for glimepiride.  相似文献   
4.
In order to find candidate proteins that are potentially associated with the thermoresistant phenotype in combination with drug resistance, we analyzed the differential protein expression in vitro in the human pancreatic cancer cell line EPP85-181-P and classical and atypical multidrug-resistant variants and their thermoresistant counterparts using proteomics. This study identifies sets of proteins that may lead to the development of thermoresistance. These results provide a fundamental basis to elucidate the molecular mechanism of thermoresistance and chemoresistance phenomena that may assist the therapy of inoperable cancers.  相似文献   
5.
A solvent extraction separation of uranium, in the presence of thorium, cerium and lanthanides with a new calix[4]resorcinarene bearing eight hydroxamic acid groups (C4RAHA) is described. Quantitative extraction of uranium is possible in ethyl acetate solution of C4RAHA at pH 8.0. The lambda(max) and molar absorptivity (varepsilon) for uranium is 356nm and 8352Lmol(-1)cm(-1). The Binding ratio of uranium with C4RAHA as evaluated by Job's method is 4:1. The system obeys Beer's law over the range 0.075-6.0mugml(-1) of uranium with Sandell sensitivity 0.0284mugcm(-2). A preconcentration factor of 142 was achieved by directly aspirating the extract for GF-AAS measurements. The two-phase stability constant evaluated at 25 degrees C for uranium is 15.91. The complexation is characterized by favorable enthalpy and entropy changes. A liquid membrane transport study of uranium was carried out from source to the receiving phase under controlled conditions and a mechanism of transport is proposed. Uranium has been determined in standard and environmental samples.  相似文献   
6.
The number of protein spots detected on two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) gels increases as the gel size increases. The largest commercially available systems resolve a few thousand spots, being only a fraction of the total proteome. We have developed an extremely long isoelectric focusing (IEF) system aimed at more complete protein profiling. The system is especially well suited to sensitive detection methods, such as radioactive detection. The major constraint preventing progress in this area has been the inability to create an even density gradient during the immobilized pH gradient (IPG) casting process. We demonstrate for the first time that this constraint can be effectively overcome, to enable greatly increased IEF separating power with all the advantages of IPG technology,  相似文献   
7.
A simple, sensitive and reproducible ultra‐performance liquid chromatography–tandem mass spectrometry method has been developed for the simultaneous determination of atenolol, a β‐adrenergic receptor‐blocker and chlorthalidone, a monosulfonamyl diuretic in human plasma, using atenolol‐d7 and chlorthalidone‐d4 as the internal standards (ISs). Following solid‐phase extraction on Phenomenex Strata‐X cartridges using 100 μL human plasma sample, the analytes and ISs were separated on an Acquity UPLC BEH C18 (50 mm × 2.1 mm, 1.7 µm) column using a mobile phase consisting of 0.1% formic acid–acetonitrile (25:75, v/v). A tandem mass spectrometer equipped with electrospray ionization was used as a detector in the positive ionization mode for both analytes. The linear concentration range was established as 0.50–500 ng/mL for atenolol and 0.25–150 ng/mL for chlorthalidone. Extraction recoveries were within 95–103% and ion suppression/enhancement, expressed as IS‐normalized matrix factors, ranged from 0.95 to 1.06 for both the analytes. Intra‐batch and inter‐batch precision (CV) and accuracy values were 2.37–5.91 and 96.1–103.2%, respectively. Stability of analytes in plasma was evaluated under different conditions, such as bench‐top, freeze–thaw, dry and wet extract and long‐term. The developed method was superior to the existing methods for the simultaneous determination of atenolol and chlorthalidone in human plasma with respect to the sensitivity, chromatographic analysis time and plasma volume for processing. Further, it was successfully applied to support a bioequivalence study of 50 mg atenolol + 12.5 mg chlorthalidone in 28 healthy Indian subjects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
The present work describes novel methods using densitometry and indirect or off‐line high performance thin‐layer chromatography–mass spectrometry (HPTLC–MS) for the simultaneous detection and quantification of asenapine, propranolol and telmisartan and their phase II glucuronide metabolites. After chromatographic separation of the drugs and their metabolites the analytes were scraped, extracted in methanol and concentrated prior to mass spectrometric analysis. Different combinations of toluene and methanol–ethanol–n‐butanol–iso‐propanol were tested for analyte separation and the best results were obtained using toluene–methanol–ammonia (6.9:3.0:0.1, v/v/v) as the elution solvent. All of the drug–metabolite pairs were separated with a homologous retardation factor difference of ≥22. The conventional densitometric approach was also studied and the method performances were compared. Both of the approaches were validated following the International Conference on Harmonization guidelines, and applied to spiked human plasma samples. The major advantage of the TLC–MS approach is that it can provide much lower limits of detection (1.98–5.83 pg/band) and limit of quantitation (5.97–17.63 pg/band) with good precision (?3.0% coefficient of variation) compared with TLC–densitometry. The proposed indirect HPTLC–MS method is simple yet effective and has tremendous potential in the separation and quantitation of drugs and their metabolites from biological samples, especially for clinical studies.  相似文献   
9.
A high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method has been developed for the determination of terbinafine in human plasma. The method employed liquid–liquid extraction of terbinafine and terbinafine‐d7 (used as internal standard) from 100 μL human plasma with ethyl acetate–n‐hexane (80:20, v/v) solvent mixture. Chromatography was performed on a BEH C18 (50 × 2.1 mm, 1.7 μm) column using acetonitrile–8.0 mm ammonium formate, pH 3.5 (85:15, v/v) under isocratic elution. For quantitative analysis, MS/MS ion transitions were monitored at m/z 292.2/141.1 and m/z 299.1/148.2 for terbinafine and terbinafine‐d7, respectively, using electrospray ionization in the positive mode. The method was validated according to regulatory guidance for selectivity, sensitivity, linearity, recovery, matrix effect, stability, dilution reliability and ruggedness with acceptable accuracy and precision. The method shows good linearity over the tested concentration range from 1.00 to 2000 ng/mL (r2 ≥ 0.9984). The intra‐batch and inter‐batch precision (CV) was 1.8–3.2 and 2.1–4.5%, respectively. The method was successfully applied to a bioequivalence study with 250 mg terbinafine in 32 healthy subjects. The major advantage of this method includes higher sensitivity, small plasma volume for processing and a short analysis time.  相似文献   
10.
Pralidoxime chloride known as 2-PAM chloride is used as antidote for nerve agent’s poisoning. This study was undertaken to establish the compatibility of 2-PAM chloride with a number of commonly used excipients by using thermoanalytical technique viz., differential scanning calorimetry (DSC) and thermogravimetry/differential thermogravimetry (TG/DTG) used in pharmaceutical formulation. The TG and DSC both results demonstrated that polyvinyl alcohol, polyacrylamide, microcrestline cellulose, hydroxypropyl cellulose, cellulose acetate, ethyl cellulose found to be compatible with 2-PAM chloride and chosen for the preparation of antidote against chemical warfare agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号