首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   2篇
化学   153篇
晶体学   1篇
力学   7篇
数学   7篇
物理学   31篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2014年   4篇
  2013年   15篇
  2012年   4篇
  2011年   5篇
  2010年   11篇
  2009年   7篇
  2008年   10篇
  2007年   10篇
  2006年   8篇
  2005年   7篇
  2004年   9篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   7篇
  1979年   2篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1959年   3篇
排序方式: 共有199条查询结果,搜索用时 15 毫秒
1.
Understanding the kinetics of grain growth, under the influence of second phase (such as impurities, voids and bubbles) is fundamental to advances in the control of microstructural evolution. As a precursor to this objective, we have investigated the grain growth kinetics in a polycrystalline material using a standard Q-state Potts’ model under Monte Carlo settings. Based on physical reasoning, new modifications are suggested to circumvent some of the disadvantages in the basic Potts model. The efficacy of these modifications vis-à-vis the basic model is verified. The influence of second phase particles on the impurity loaded grain boundaries is investigated for the study of grain growth kinetics.  相似文献   
2.
This review narrates the electron transfer reactions of various nickel(III) and nickel(IV) complexes reported during the period 1981 until today. The reactions have been categorized mainly with respect to the type of nickel complexes. The reactivity of nickel(III) complexes of macrocycles, 2,2′-bipyridyl and 1,10-phenanthroline, peptides and oxime–imine, and of nickel(IV) complexes derived from oxime–imine, oxime and miscellaneous ligands with various organic and inorganic electron donors have been included. Kinetic and mechanistic features associated with such interactions have been duly analyzed. The relevance of Marcus cross-relation equations in the delineation of the electron transfer paths has also been critically discussed.  相似文献   
3.
A 2D coordination compound {[Cu2(HL)(N3)]?ClO4} ( 1 ; H3L=2,6‐bis(hydroxyethyliminoethyl)‐4‐methyl phenol) was synthesized and characterized by single‐crystal X‐ray diffraction to be a polymer in the crystalline state. Each [Cu2(HL)(N3)]+ species is connected to its adjacent unit by a bridging alkoxide oxygen atom of the ligand to form a helical propagation along the crystallographic a axis. The adjacent helical frameworks are connected by a ligand alcoholic oxygen atom along the crystallographic b axis to produce pleated 2D sheets. In solution, 1 dissociates into [Cu2(HL)2(H3L)]?2H2O ( 2 ); the monomer displays high selectivity for Zn2+ and can be used in HEPES buffer (pH 7.4) as a zinc ion selective luminescent probe for biological application. The system shows a nearly 19‐fold Zn2+‐selective chelation‐enhanced fluorescence response in the working buffer. Application of 2 to cultured living cells (B16F10 mouse melanoma and A375 human melanoma) and rat hippocampal slices was also studied by fluorescence microscopy.  相似文献   
4.
Summary The kinetics of reduction of [MnIII(cydta)] (where H4cydta=trans-cyclohexane-1,2-diamine-N N N' N'-tetraacetic acid) by some thiourea reductants have been studied in aqueous solution by stopped-flow techniques in the pH ranges 2.5–4.5 and 9.2–10.2. An initial increase in absorbance followed by a steady decrease indicated the formation of a precursor complex prior to the electron transfer step. The reactions are first order in both oxidant and reductant. The observed increase in rate in going from low to high pH is attributed to the difference in reactivities of the aqua and hydroxo species of the MnIII complex; the higher reactivity of the latter is consistent with the formation of a ligand-bridged activated species prior to electron transfer. The reactivity order for the thiourea derivatives follows the order of their reported substituent effects.  相似文献   
5.
An attempt js made to study the behaviour of recoil128I atoms in neutron irradiated I2O5 at ambient temperature. The initial retention is found to be 44±2%. However, a substantial increase /57±2%/ in the value is observed upon heating the sample at 473 K for 1 h prior to irradiation. A kinetic study of post-recoil thermal annealing of neutron irradiated material is also presented. Effect of pre-heat treatment results in a decrease of rate constants and saturation retention values at respective temperatures while the Eact for the overall process remains almost unaltered.  相似文献   
6.
Near-edge x-ray-absorption fine structure (NEXAFS) spectroscopy was adopted to probe the unoccupied electronic states of C60 anchored onto an organized assembly of 11-amino-1-undecane thiol on Au(111). The polarization dependence of the intensity of pi* resonance associated with C60 pi network revealed the self-assembled monolayer (SAM) system to be oriented with an average molecular tilt angle of 57 degrees with respect to the surface normal. Invoking the absence of solid-state band dispersion effects and in comparison to solid C60 and /or 1-ML C60/Au(111), the electronic structure of the resulting assembly was found dominated by spectral position shift and linewidth and intensity changes of the lowest unoccupied molecular orbital (LUMO), LUMO+1, and LUMO+2 orbitals. The latter implied hybridization between N Pz of -NH2 group of thiolate SAM and pi levels of C60, resulting in a nucleophilic addition with a change in the symmetry of C60 from Ih to C1 in the SAM. Occurrence of a new feature at 285.3 eV in the NEXAFS spectrum, assigned previously to pi* graphitic LUMO, signified the formation of aggregated clusters, (C60)n of C60 monomer. Low tunneling current scanning tunneling microscopy confirmed them to be spherical and stable aggregates with n approximately 5.  相似文献   
7.
Patnaik U  Muralidhar J 《Talanta》1995,42(4):553-556
Cr(III) slowly forms a violet complex with EDTA at pH 3.5 +/- 0.2 under normal conditions. The complex formation can be catalyzed by irradiating the reacting mixture with ultrasonic waves. Quantitative formation of the complex was possible with ultrasonic waves of 15 W/cm(2) intensity within 7.5 min of sonication. This method may be successfully applied to the determination of chromium in ores and beneficiated products containing 20-60% Cr(2)O(3) without separating the analyte from the matrix elements.  相似文献   
8.
Summary The formation of ternary complexes of the MAL3– type [where M = CuII, NiII and ZnII ; A = nitrilotriacetic acid (NTA); L = 1-hydroxy-2-naphthoic acid (1,2 HNA) and 2-hydroxy-1-naphthoic acid (2,1 HNA)] have been studied potentiometrically in 50% v/v aqueous — ethanol (25° and µ = 0.1). Under identical conditions the binary complexes of the 1,2- and 2,1-HNA ligands have also been examined. The values of mixed ligand formation constants KMAL have been found to be lower than KML (first step formation constant of binary complexes) and even less than (second step formation constant of binary complexes).  相似文献   
9.
α-Methylstyrene (MS) and isobutyl vinyl ether (VE) readily polymerize, styrene (S) polymerizes to a small extent, and isobutylene (IB), butadiene (BD), and isoprene (IP) fail to polymerize in the presence of catalytic amounts of AlCl3 when propionitrile, ethyl propionate, and methyl isobutyrate are used as reaction media. MS polymerizes readily and S polymerizes with difficulty in the presence of AlCl3 to yield homopolymers when acrylonitrile (AN) is present and copolymers with ethyl acrylate (EA) and methyl methacrylate (MMA). VE readily homopolymerizes, while IB, BD, and IP fail to polymerize in the presence of AlCl3 and the acrylic monomers. VE readily homopolymerizes, S and MS polymerize to a very small extent, and IB, BD, and IP do not polymerize in the presence of ethylaluminum sesquichloride (EASC) in polar solvents. VE readily homopolymerizes in the presence of EASC and the acrylic monomers. MS polymerizes to a small extent in the presence of EASC and the acrylic monomers to yield equimolar copolymers with EA and MMA and a mixture of cationic homopolymer and equimolar copolymer with AN. S yields equimolar copolymers in low yield in the presence of EASC and the acrylic monomers. IB, BD, and IP in the presence of EASC do not polymerize to any significant extent when EA is present, form AN-rich copolymers and yield poly(methyl methacrylate) in the presence of MMA. A revised mechanism is presented for the formation of cationic, radical, random, and alternating copolymers as well as alternating copolymer graft copolymers in the copolymerization of donor and acceptor monomers.  相似文献   
10.
Pradyot K. Chowdhury   《Chemical physics》2006,320(2-3):133-139
The vibrational frequencies of the N–H stretching modes of aniline after forming a strong doubly H-bonded complex with tetrahydrofuran (THF) are measured with infrared depletion spectroscopy that uses cluster-size-selective resonance-enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry. Two strong infrared absorption features observed at 3355 and 3488 cm−1 are assigned to the symmetric and antisymmetric N–H stretching vibrations of the 1:2 aniline–THF complex, respectively. The red-shifts of the N–H stretching vibrations of aniline agree with the ab initio calculated (MP2/6-31G**) aniline-(THF)2 structure in which both aniline N–H bonds interact with the oxygen atom of THF through two hydrogen bonds. The calculated binding energy is found to be 29.6 kJ mol−1 after corrections for basis set superposition error (BSSE) and zero-point energy. The calculated structure revealed that the angle between the N–H bonds in the NH2 group increased to 112.5° in the aniline–(THF)2 complex from that of 109.8° in the aniline. The electronic 0–0 band origin for the S1 ← S0 transition is observed at 32,900 cm−1 in the aniline–(THF)2 complex, giving a red-shift of 1129 cm−1 from that of the aniline molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号