首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   13篇
物理学   1篇
  2022年   1篇
  2002年   1篇
  1995年   1篇
  1993年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
排序方式: 共有14条查询结果,搜索用时 203 毫秒
1.
Abstract— Ab initio configuration interaction wavefunctions and energies are reported for the ground state and many low-lying excited singlet and triplet states of ethyl pheophorbide a (Et-Pheo a) and ethyl chlorophyllide a (Et-Chl a), and are employed in an analysis of the electronic absorption spectra of these systems. In both molecules the visible spectrum is found to consist of transitions to the two lowest-lying 1(π, π*) states, S1 and S2. The configurational compositions of S1 and S2 in both molecules are similar, and are described qualitatively in terms of a four-orbital model. The S1← S0 transition in each case is predicted to be intense, and is largely in-plane y-polarized, while the S2 S0 transition is predicted to be extremely weak and in-plane polarized. The orientation of the S2 S0 transition dipole is not conclusively established in the present calculations. The Soret band in both molecules is composed of transitions to no less than ten states (S3-S12 in Et-Chl a and S3-S7S9-S12. and S14 in Et-Pheo a), which exhibit primarily (π, π*) character. The configurational compositions of these states are generally a complex mixture of excitations from both occupied macrocyclic π molecular orbitals and occupied orbitals with electron density in the cyclopen-tanone ring and the carbomethoxy chain. No clear correspondences are evident between respective Soret states of the two systems. Transitions to these states are generally intense and display a variety of in-plane polarizations. Two additional Soret states of Et-Pheo a, S8 and S13, exhibit primarily (n. π*) character. S8 is characterized by excitations from u and non-bonding regions of the carbomethoxy chain, while S13 is described by n →π* excitations involving the nitrogen atom of ring II. No corresponding (n, π*) states were found for Et-Chl a. In both molecules the lowest two triplet states, T1 and T2, are found to lie lower in energy than S1. while T, and S1 are approximately degenerate. The configurational compositions of T1-T4 of both molecules are nearly identical, and may be described by a four-orbital model. However, the compositions of T1-T4 differ sharply from those of S1 and S2. A number of higher-lying 3(π, π*) states of both molecules (T5-T13 in Et-Chi a and T8-T9, T11-T13 in Et-Pheo a) are found to have energies similar to the singlet Soret states, relative to S0. They are characterized by a complex mixture of configurations which do not include significant contributions involving the four-orbital model. In addition, two 3(n, π*) states of Et-Pheo a, T10 and T14, are found, which are somewhat analogous to S8 and S13. Additional data presented include the charge distributions and molecular dipole moments of the S0. S1, and T1 states of both molecules, as well as energies and oscillator strengths of computed Sn←S1 and Tn1 transitions.  相似文献   
2.
The shape group method (SGM) and the associated (a,b)-parameter maps provide a detailed shape characterization of molecular charge distributions. This method is applied to the study of the variations of shape and conjugation of conformers of 2-phenyl pyrimidine in their electronic ground state. Within the SGM framework, the method of (a,b)-parameter maps provides a concise, nonvisual, algorithmic technique for shape characterization of molecules with fixed nuclear geometries. Moreover, shape codes derived from the (a,b)-parameter maps afford a practical means for efficiently storing the shape properties of molecules in an electronic database. The shape codes of two or more charge distributions can be compared directly, and numerical measures of molecular shape similarity can be computed using a technique that is simple, fast, and inexpensive, especially in relation to direct, pairwise comparisons of electronic charge densities. The quantitative and automated nature of the method suggests applications in the field of computer-aided molecular design. In this study, the method is used for the first time to determine detailed numerical shape codes and shape similarity measures for a nontrivial conformational problem involving changes in energy and in conjugation. Numerical shape similarity measures of eight conformers of 2-phenyl pyrimidine are determined and correlated with variations in conformational energy and conjugation. The competing effects of steric repulsion and conjugation lead to important correlations between conformational energy and shape. © 1995 John Wiley & Sons, Inc.  相似文献   
3.
Ab initio configuration interaction wavefunctions and energies are reported for the ground state and many low-lying singlet and triplet states of magnesium chlorin and chlorin, and are employed in an analysis of the electronic absorption spectra of these systems.In chlorin, the calculated visible spectrum consists of two 1(π, π1) states, the lower energy, y-polarized state exhibiting moderate absorption intensity in contrast to the very weak absorption of the higher energy x-polarized state. The configurational composition of both states is well described by the four-orbital model. Five 1(π, π1) states are responsible for the Soret band envelope. A moderately intense y-state lies under the low energy edge of the band envelope, while two x-polarized states of moderate and strong intensity, respectively, are responsible for the band maximum. The final two 1(π, π1) states lie at the high energy edge of the Soret band and introduce a measure of asymmetry into the band envelope. Two 1(n, π1) states of very weak oscillator strength are also found in this region of the spectrum. All the Soret states are of complex configurational composition, and several of the higher lying states contain contributions from doubly excited configurations.The calculated visible spectrum of magnesium chlorin also consists of two 1(π, π1) states, with the weakly absorbing x-polarized state lying approximately 200 cm?1 lower in energy than the moderately intense y-polarized state. The configurational composition of both states is well described by the four-orbital model. Four 1(π, π1) states constitute the bulk of the intensity in the Soret band envelope. In distinction to chlorin, the moderately intense 1(π, π1) state at the low energy edge of the band envelope is x-polarized. Two intense 1(π, π1) states of y- and x-polarization, respectively, constitute the band maximum region, and a single x-polarized state of moderately strong intensity can be assigned to the high energy shoulder of the band envelope. Two other weakly absorbing 1(π, π1) states are also found in this region, along with another weakly absorbing state of mixed in-plane and out-of-plane polarization. No clearly defined 1(n, π1) states are observed. As was the case for chlorin, all the Soret states are of complex configurational composition, and some of the higher energy states contain significant contributions from doubly excited configurations.Chlorin and magnesium chlorin both possess three 3(π, π1) states which lie below S1 and a single 3(π, π1) which lies slightly above S2. All four of the low-lying 3(π, π1) states in each molecule are well described by the four-orbital model, with T1 being essentially a single configuration in each case. The remainder of the 3(π, π1) states are clustered in the same energetic region as the comparable 1(π, π1) Soret states, with comparably complex configurational compositions.Dipole moments and charge distributions for low-lying singlet and triplet states are also reported, and are used to rationalize chemical reactivity characteristics.  相似文献   
4.
Abstract— A protonated Schiff base of Ni (II)-pyrochlorophyll a has been synthesized which exhibits a reversible bathochromic shift of 504 cm-1 relative to Ni (II)-pyrochlorophyll a. The magnitude of this shift lies between those observed for P700 and P680, the photoactive pigments of photosystems I and II in plants. Cyclic voltammetric measurements show that the protonated Schiff base is about 0.2 V more difficult to oxidize than its unprotonated form. These results suggest that a protonated Schiff base may be a better model for P680 than, as was originally assumed, for P700. In addition, the results of solvent and counterion effect studies show that microenvironmental perturbations in the neighborhood of the protonated Schiff base moiety are unlikely to induce further spectral shifts. Ab initio quantum mechanical calculations show a small hypsochromic shift rather than the observed bathochromic one, and the reasons for this discrepancy are discussed.  相似文献   
5.
Abstract— Ab initio configuration interaction wavefunctions and energies are reported for 19 doublet states of the anion radical of ethyl bacteriochlorophyllide a (Et-BChl a˙), and are employed in a resolution of the electronic absorption spectrum, as well as in a comparison with a previously reported study of the electronic states and spectrum of the anion radical of ethyl bacteriopheophorbide a (Et-BPheo a˙). The lowest two excited doublet states, D1 and D2, of Et-BChl a˙ are found to be approximately degenerate and are predicted to contribute to the experimentally observed absorption at 10000 cm?1. In contrast, the D2←D0 transition in Et-BPheo a˙ is predicted to contribute to the 11000 cm?1 absorption, while the D1←D0 transition appears at approximately 8600 cm?1 with a low oscillator strength (f= 0.002). The prominent visible absorption at ~15700 cm?1 in both molecules is found to be due to the D4← D0 transition. Another difference between the predicted spectra of the two molecules appears in the low-energy shoulder of the Soret band. Here, two intense transitions, D10←D0 and D11←D0, are predicted for Et-BChl a˙, as opposed to three fairly intense transitions, D7←D0, D8←D0 and D9←D0, for Et-BPheo a˙, differences which may provide a means of distinguishing between the two molecules using resonance Raman spectroscopy. The remainder of the Soret band of Et-BChl a˙ above 26000 cm?1 consists of a number of closely-spaced transitions to states D12←D18. The intense transitions D12←D0, D13←D0, D14←D0 are predicted to contribute to the Soret maximum near 30000 cm?1. The ground state spin densities of the two molecules are similar, with the minor difference of somewhat less spin density located on the methine carbon atoms of Et-BChl a˙ compared with Et-BPheo a˙.  相似文献   
6.
The ground and excited singlet and triplet states of 9,10-anthraquinone and its 1,4-dihydroxy and 1,4-diamino derivatives are investigated by ab initio configuration interaction calculations, using a floating Gaussian basis. For anthraquinone the calculated electronic absorption spectrum is consistent with previous experimental and theoretical results. The possible mechanisms of intersystem crossing and intensity borrowing in phosphorescence are discussed in terms of first- and second-order spin-orbit and vibronic perturbations of the computed singlet and triplet states. The calculated spectra of the 1,4-disubstituted derivatives are more complex than previously suggested from low-resolution polarized absorption studies. The principal effect of 1,4-substitution by electron donating groups is shown to be a powerful conjugative effect which significantly modifies selected molecular orbitals of anthraquinone; the resultant effect on the absorption spectra is the creation of two new substituent-induced π → π* transitions, one of which corresponds to the intense visible absorption band of these systems.  相似文献   
7.
Ab initio configuration interaction wavefunctions and energies are reported for 16 doublet states of the anion radical of ethyl bacteriopheophorbide a (Et-BPheo a), and are employed in an analysis of the electronic absorption spectrum. The lowest excited doublet state D1 is predicted to lie 8601 cm-1 above the ground state D0; the D1← D0 transition is nearly forbidden, with a computed oscillator strength f= 0.002. The visible absorption spectrum is shown to consist of transitions to three 2(π, π*) states, D2, D3, and D4. The D4← D0 transition (y-polarized, f= 0.91) appears to account for observed intense absorption at 15 800 cm-1. The Soret band of Et-BPheo a is shown to consist of transitions to several 2(π,π*) states, D7-D15. Transitions of particularly high intensity include D7← D0 (y-polarized, f= 0.72), D10← D0 (y-polarized, f= 1.1), D12← D0 (xy-polarized, f= 0.86) and D15← D0 (y-polarized, f= 0.83). Spin density data and plots are used to describe and compare the general features of the unpaired spin distributions in D0 and D1, which are in reasonable agreement with other reported calculated values and available experimental data for D0.  相似文献   
8.
A new index suitable for computing molecular similarity based upon the similarity of molecular properties such as electrostatic potentials or electrostatic fields is presented in two forms. For one form of the present index, general conditions are established for which a linear measure of similarity is obtained. An illustrative example is provided in which the electrostatic field and electrostatic potential of guanine obtained from different wave functions are compared. © 1993 John Wiley & Sons, Inc.  相似文献   
9.
The ground and excited states of a cofacial porphine-magnesium porphine dimer with a ring separation of 5.35 Å are investigated by ab initio configuration interaction calculations, using a floating gaussian basis. A pair of charge-transfer states are found ≈23000 cm?1 above the ground state, but are lowered by ≈7400 cm?1 upon coordination of the Mg atom with chloride ion.  相似文献   
10.
A formalism is presented that incorporates the entirety of all field-based molecular similarity indices of general form S ij = ij /h( ii , jj ), where the numerator is given by the inner product or overlap of field functions F i and F j corresponding to the ith and jth molecules, respectively, and the denominator is given by a suitable mean function of the self-similarities ii and jj . This family of similarity indices includes the index initially introduced by Carbó nearly twenty years ago, where h( ii , jj ) is taken to be the geometric mean of ii and jj , and the well-known indices due to Hodgkin and Richards, and Petke, where h( ii , jj ) is taken to be the arithmetic mean and maximum of ii and jj , respectively. Two new indices based upon the harmonic mean and minimum of ii and jj are also defined, and it is demonstrated that the entire set of field-based similarity indices can be generated from a one-parameter family of functions, called generalized means, through proper choice of the parameter value and suitable limiting procedures. Ordering and rigorous bounds for all of the indices are described as well as a number of inter-relationships among the indices. The generalization of field-based similarity indices, coupled with the relationships among indices that have been developed in the present work, place the basic theory of these indices on a more unified and mathematically rigorous footing that provides a foundation for a better understanding of the quantitative aspects of field-based molecular similarity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号