首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2023年   1篇
  2009年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The non-isothermal crystallization behavior of poly(trimethylene terephthalate) (PTT) and its blends with a liquid crystalline polymer, namely Vectra A950 (VA), was studied by differential scanning calorimetry. The values of the half-time of crystallization, t 0.5 and the parameter F(T) in the combined Avrami and Ozawa equation indicated that VA can enhance the PTT crystallization rate by acting as a nucleating agent. The crystallization activation energy of the PTT phase increased with increasing VA content. The blends were immiscible, as can be inferred from their morphology. Thermogravimetric analysis of the blends revealed improved thermal stability by the incorporation of VA.  相似文献   
2.
Poly(trimethylene terephthalate) (PTT) and a liquid crystalline polymer, Vectra A950 (VA), were melt-blended and subjected to capillary rheometry. Effects of VA content, shear rate and temperature on viscosity and flow activation energy (Ea) were investigated. Partial fibrillation was found even though the viscosity ratio was greater than one, leading to the formation of in-situ composites. Thermal and thermogravimetric analysis of the blends suggested that they were immiscible and their thermal stabilities were enhanced. From tensile tests, the incorporation of VA improved tensile modulus, slightly decreased tensile strength, and drastically lowered elongation at break, compared to neat PTT. It was found that the blend with the best VA dispersion can be achieved at the minimum VA content (10 wt%) and lowest processing temperature (250 °C). Not only did this blend exhibit improved mechanical properties comparable to those of blends processed at temperatures closer to the crystalline-to-nematic transition of VA (~280 °C), it also shows enhanced processibility through the reduction of both melt viscosity and Ea.  相似文献   
3.
Over the past decade, the use of polysaccharides has gained tremendous attention in the field of medical technology. They have been applied in various sectors such as tissue engineering, drug delivery system, face mask, and bio-sensing. This review article provides an overview and background of polysaccharides for biomedical uses. Different types of polysaccharides, for example, cellulose and its derivatives, chitin and chitosan, hyaluronic acid, alginate, and pectin are presented. They are fabricated in various forms such as hydrogels, nanoparticles, membranes, and as porous mediums. Successful development and improvement of polysaccharide-based materials will effectively help users to enhance their quality of personal health, decrease cost, and eventually increase the quality of life with respect to sustainability.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号