首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
化学   15篇
力学   1篇
数学   1篇
物理学   15篇
  2021年   1篇
  2012年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   3篇
  2000年   2篇
  1996年   2篇
  1994年   3篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
  1979年   1篇
  1962年   1篇
  1961年   1篇
  1932年   1篇
  1931年   2篇
  1930年   1篇
  1929年   1篇
  1928年   1篇
  1927年   1篇
  1926年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
The complex morphology of high-speed melt-spun nylon-6 fibres hydrated with D2O was investigated using 1H double-quantum-filtered spin-diffusion NMR experiments. The magnetisation exchange from selected crystalline domains along the fibrils and interfibrils was simulated with the help of a three-dimensional solution of a spin-diffusion equation approximated by a product of one-dimensional analytical NMR signals, which correspond to a lamellar morphology. This allows to measure the sizes of crystalline and less-mobile amorphous domains along the fibrils, as well as the diameter of the fibrils and interfibril distances. A series of nylon-6 fibres with extreme values of winding speed and draw ratio was investigated. The changes detected in the domain size along the fibrils and interfibrils show the same trend in the data obtained from wide-angle X-ray diffraction and small-angle X-ray scattering.  相似文献   
2.
3.
Cellulose - A modified TEMPO-catalyzed oxidation of the solvent-exposed glucosyl units of cellulose to uronic acids, followed by carboxyl reduction with NaBD4 to 6-deutero- and...  相似文献   
4.
5.
6.
7.
Polycyclic aromatic hydrocarbons (PAHs) are major environmental carcinogens produced in the combustion of fossil fuels, tobacco, and other organic matter. Current evidence indicates that PAHs are transformed enzymatically to active metabolites that react with DNA to form adducts that result in mutations. Three activation pathways have been proposed: the diol epoxide path, the radical-cation path, and the quinone path. The latter involves aldo-keto reductase mediated oxidation of PAH dihydrodiol metabolites to catechols that enter into redox cycles with quinones. This results in generation of reactive oxygen species (ROS) that attack DNA, and the PAH quinones also react with DNA to form adducts. Several strategies for synthesis of the stable adducts formed by the o-quinone metabolites of carcinogenic PAHs with 2'-deoxyribonucleosides were investigated and compared. The PAH quinones studied were benz[a]anthracene-3,4-dione and its 7-methyl- and 7,12-dimethyl- derivatives. The parent PAHs represent a range of carcinogenicity from inactive to highly potent. Two synthetic methods were devised that differ in the catalyst employed, Pd(OAc)(2) or CuI. The Pd-mediated method involved coupling a protected amino-catechol PAH derivative with a halo-2'-deoxyribonucleoside. The copper-mediated method entailed reaction of a halo-PAH catechol derivative with a 2'-deoxyribonucleoside. Adducts of benz[a]anthracene-3,4-dione (and its 7-methyl- and 7,12-dimethyl- derivatives) with 2'-deoxyadenosine and 2'-deoxyguanosine were prepared by these methods. Availability of adducts of these types through synthesis makes possible for the first time biological studies to determine the role of these adducts in tumorigenesis. The copper-mediated method offers advantages of economy, adaptability to large-scale preparation, utility for synthesis of (13)C- or (15)N-labeled analogues, and nonformation of bis-adducts as secondary products.  相似文献   
8.
The complex formed between cytochrome c oxidase from Paracoccus denitrificans and its electron-transfer partner cytochrome c has been studied by multi-frequency pulse electron paramagnetic resonance spectroscopy. The dipolar relaxation of a fast-relaxing paramagnetic center induced on a more slowly relaxing center can be used to measure their distance in the range of 1-4 nm. This method has been used here for the first time to study transient protein-protein complex formation, employing soluble fragments for both interacting species. We observed significantly enhanced transversal relaxation of the CuA center in cytochrome c oxidase due to the fast-relaxing iron of cytochrome c upon complex formation. The possibility to measure cytochrome c oxidase in the presence and absence of cytochrome c permitted us to separate the dipolar relaxation from other relaxation contributions. This allowed a quantitative simulation and interpretation of the relaxation data. The specific temperature dependence of the dipolar relaxation together with the high orientational selectivity achieved at high magnetic field values may provide detailed information on distance and relative orientation of the two proteins with respect to each other in the complex. Our experimental results cannot be explained by any single well-defined structure of the complex of cytochrome c oxidase with cytochrome c, but rather suggest that a broad distribution in distances and relative orientations between the two proteins exist within this complex.  相似文献   
9.
10.
In this study, the effect of chemical crosslinking on the creep behavior of high-strength fibers, obtained by gel-spinning and subsequent hot-drawing of ultra-high molecular weight polyethylene (UHMWPE), is examined. In the first part of the paper, the general aspects of the creep behavior of these fibers are discussed. The second part deals with UHMWPE fibers that are crosslinked by means of a) chlorosulfonation and b) dicumyl peroxide treatment followed by UV irradiation. The latter technique leads to an improvement of the creep resistance of the UHMWPE fibers without affecting their high tensile strengths. In spite of the fact that the network formation is fairly high, the creep cannot be completely removed. The results indicate that the creep process in UHMWPE fibers is associated with a deformation mechanism in the crystalline regions of the fiber, which are not affected by chemical crosslinking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号